Oleanolic (OA) and ursolic acids (UA) are triterpenes that are abundant in vegetables, fruits and medicinal plants. They have been described as active moieties in medicinal plants used for the treatment of tuberculosis. In this study, we analyzed the effects of these triterpenes on macrophages infected in vitro with Mycobacterium tuberculosis (MTB). We evaluated production of nitric oxide (NO), reactive oxygen species (ROS), and cytokines (TNF-α and TGF-β) as well as expression of cell membrane receptors (TGR5 and CD36) in MTB-infected macrophages following treatment with OA and UA. Triterpenes caused reduced MTB growth in macrophages, stimulated production of NO and ROS in the early phase, stimulated TNF-α, suppressed TGF-β and caused over-expression of CD36and TGR5 receptors. Thus, our data suggest immunomodulatory properties of OA and UA on MTB infected macrophages. In conclusion, antimycobacterial effects induced by these triterpenes may be attributable to the conversion of macrophages from stage M2 (alternatively activated) to M1 (classically activated).
BackgroundThe classical roles of B cells include the production of antibodies and cytokines and the generation of immunological memory, these being key factors in the adaptive immune response. However, their role in innate immunity is currently being recognised. Traditionally, B cells have been considered non-phagocytic cells; therefore, the uptake of bacteria by B cells is not extensively documented. In this study, we analysed some of the features of non-specific bacterial uptake by B lymphocytes from the Raji cell line. In our model, B cells were infected with Mycobacterium tuberculosis (MTB), Mycobacterium smegmatis (MSM), and Salmonella typhimurium (ST).ResultsOur observations revealed that the Raji B cells were readily infected by the three bacteria that were studied. All of the infections induced changes in the cellular membrane during bacterial internalisation. M. smegmatis and S. typhimurium were able to induce important membrane changes that were characterised by abundant filopodia and lamellipodia formation. These membrane changes were driven by actin cytoskeletal rearrangements. The intracellular growth of these bacteria was also controlled by B cells. M. tuberculosis infection also induced actin rearrangement-driven membrane changes; however, the B cells were not able to control this infection. The phorbol 12-myristate 13-acetate (PMA) treatment of B cells induced filopodia and lamellipodia formation, the production of spacious vacuoles (macropinosomes), and the fluid-phase uptake that is characteristic of macropinocytosis. S. typhimurium infection induced the highest fluid-phase uptake, although both mycobacteria also induced fluid uptake. A macropinocytosis inhibitor such as amiloride was used and abolished the bacterial uptake and the fluid-phase uptake that is triggered during the bacterial infection.ConclusionsRaji B cells can internalise S. typhimurium and mycobacteria through an active process, such as macropinocytosis, although the resolution of the infection depends on factors that are inherent in the virulence of each pathogen.
Epithelial cells of the cornea and the conjunctiva constitutively produce antimicrobial peptides; however, the production of defensins by other cell types located around the eye has not been investigated. We analyzed the production of beta-defensins (hBD) and cathelicidin LL-37 during the infection of primary limbo-corneal fibroblasts with M. tuberculosis (MTB), M. abscessus (MAB), and M. smegmatis (MSM). The intracellular survival of each mycobacterium, the production of cytokines and the changes on the distribution of the actin filaments during the infection were also analyzed. Fibroblasts produce basal levels of hBD1 and LL-37 and under PMA stimulation they produce hBD2, hBD3 and overexpress hBD1 and LL-37. MAB induced the highest levels of hBD1 and LL-37 and intermediate levels of IL-6; however, MAB was not eliminated. In addition, MAB induced the greatest change to the distribution of the actin filaments. MTB also produced changes in the structure of the cytoskeleton and induced low levels of hBD1 and IL-6, and intermediate levels of LL-37. The balance of these molecules induced by MTB appeared to contribute to the non-replicative state observed in the limbo-corneal cells. MSM induced the lowest levels of hBD1 and LL-37 but the highest levels of IL-6; MSM was eliminated. The results suggest that mycobacterial infections regulate the production of antimicrobial peptides and cytokines, which in conjunction can contribute to the control of the bacilli.
The intestinal epithelium is a monolayer of cells arranged side-by-side and connected by tight junction (TJ) proteins expressed at the apical extreme of the paracellular membrane. This layer prevents stress-induced inflammatory responses, thus helping to maintain gut barrier function and gut homeostasis. The aim of the present study was to evaluate the effects of chronic immobilization stress on the colonic expression of various parameters of homeostasis. A total of two groups of female BALB/c mice (n=6) were included: A stressed group (short-term immobilization for 2 h/day for 4 consecutive days) and an unstressed (control) group. Colon samples were obtained to detect neutrophils and goblet cells by optical microscopy, TJ protein expression (occludin, and claudin −2, −4, −7, −12 and −15) by western blotting, mRNA levels of TJ genes and proinflammatory cytokines [tumor necrosis factor (TNF)-α, interleukin (IL)-1β, −6 and −8] by reverse transcription-quantitative PCR, fecal lactoferrin by ELISA and the number of colony-forming units of aerobic bacteria. Compared with goblet cells in control mice, goblet cells were enlarged and reduced in number in stressed mice, whereas neutrophil cellularity was unaltered. Stressed mice exhibited reduced mRNA expression for all evaluated TJ mRNAs, with the exception of claudin-7, which was upregulated. Protein levels of occludin and all claudins (with the exception of claudin-12) were decreased in stressed mice. Fecal lactoferrin, proinflammatory cytokine mRNA levels and aerobic bacterial counts were all increased in the stressed group. These results indicated that immobilization stress induced proinflammatory and potential remodeling effects in the colon by decreasing TJ protein expression. The present study may be a useful reference for therapies aiming to regulate the effects of stress on intestinal inflammatory dysfunction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.