Visceral leishmaniasis is a multisystemic zoonotic disease that can manifest with several symptoms, including neurological disorders. To investigate the pathogenesis of brain alterations occurring during visceral leishmaniasis infection, the expression of the cytokines IL-1β, IL-6, IL-10, IL-12p40, IFN-γ, TGF-β and TNF-α and their correlations with peripheral parasite load were evaluated in the brains of dogs naturally infected with Leishmania infantum. IL-1β, IFN-γ and TNF-α were noticeably up-regulated, and IL-10, TGF-β and IL-12p40 were down-regulated in the brains of infected dogs. Expression levels did not correlate with parasite load suggestive that the brain alterations are due to the host's immune response regardless of the phase of the disease. These data indicate the presence of a pro-inflammatory status in the nervous milieu of dogs with visceral leishmaniasis especially because IL-1β and TNF-α are considered key factors for the initiation, maintenance and persistence of inflammation.
Visceral leishmaniasis is a chronic disease caused by Leishmania infantum. We aimed to detect the parasite in the brain of fifteen naturally-infected dogs using in situ hybridization and immunohistochemistry, and the gene expression of selected chemokines by RT-qPCR. We detected no parasite in the brain, but perivascular deposition of parasite DNA and IgG in the choroid plexus. We noticed up-regulation of CCL-3, CCL-4 and CCL-5, coherent with T lymphocyte accumulation, stating the brain as a pro-inflammatory environment. Indeed, not necessarily the parasite itself, but rather its DNA seems to act as a trigger to promote brain inflammation during visceral leishmaniasis.
SUMMARYVisceral leishmaniasis is a complex disease caused by Leishmania infantum, and in dogs, besides the classical symptoms, there are descriptions of inflammatory alterations in the brain. Brain inflammation is a strictly controlled process, and as the brain counts on the efficiency of the bloodbrain barrier (BBB), we aimed to assess BBB integrity in dogs with spontaneous visceral leishmaniasis. Therefore, we evaluated markers in the cerebrospinal fluid (CSF) and in brain tissue related to BBB disruption and brain inflammation. Elevated albumin quota revealed BBB breakdown, corroborated by increased concentrations of anti-Leishmania antibodies in the CSF. In the brain, albumin and IgG staining formed halos around blood vessels, a classical indicator of BBB leakage. Soluble IgG was also detected in the choroid plexus and ependyma, and in these structures, IgG stained random resident cells. IgG + cells and Fcc-RI + cells were identified in the choroid plexus, ependyma and perivascular in the brain parenchyma. The data support the occurrence of BBB disruption in dogs with spontaneous visceral leishmaniasis, and IgG as a key molecule that is capable of initiating and/or maintaining the inflammatory stimuli in the nervous milieu and the CSF as an important disseminator of inflammatory stimuli within the CNS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.