Glyphosate retention, absorption and translocation with and without adjuvant were examined in Lolium rigidum and Conyza canadensis in greenhouse and laboratory settings to develop an understanding of the influence of the selected adjuvant on glyphosate activity. Tests on whole plants show that the dose of herbicide needed to reduce dry weight by 50% (GR50) or plant survival (LD50) decreases by mixing glyphosate and adjuvant to 22%–24% and 42%–44% for both populations of L. rigidum and C. canadensis, respectively. This improvement in efficacy could be attributed to the higher herbicide retention and lower contact angle of the glyphosate + adjuvant drops on the leaf surface compared to the glyphosate solution alone. Plants of both species treated with 14C-glyphosate + adjuvant absorbed more glyphosate compared to non-adjuvant addition. Furthermore, the movement of the herbicide through the plant was faster and greater with the adjuvant. Our results reveal that the use of adjuvants improves the effectiveness of glyphosate in two of the most important weeds in agricultural crops in Mediterranean countries.
Six Johnsongrass populations suspected of being glyphosate resistant were collected from railways and freeways near Cordoba (SW Spain), where glyphosate is the main weed control tool. The 50% reduction in shoot fresh weight (GR 50 ) values obtained for these six populations ranged from 550.4 to 1169 g ae ha −1 , which were 4.2 to 9 times greater than the value obtained for the susceptible population. Glyphosate was equally metabolized to the same extent in both resistant and susceptible populations, with no significant differences in either 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) inhibition or basal activity. No amino acid substitutions were observed in any of the resistant populations. Slight but significant differences in glyphosate penetration were observed among some but not all of the resistant populations and for the times of incubation assayed, although these differences were not considered further. The proposed primary mechanism of resistance in these six glyphosate-resistant Johnsongrass populations is reduced herbicide translocation, because the amount of glyphosate that translocated from treated leaves to shoots and roots in the susceptible population was double that observed in the resistant populations. As glyphosate multiple resistance due to more than one mechanism is not uncommon, this is the first time that glyphosate-resistant Johnsongrass populations have been fully described for all known mechanisms.
Glyphosate is a cheap herbicide that has been used to control a wide range of weeds (4–6 times/year) in citrus groves of the Gulf of Mexico; however, its excessive use has selected for glyphosate-resistant weeds. We evaluated the efficacy and economic viability of 13 herbicide treatments (glyphosate combined with PRE- and/or POST-emergence herbicides and other alternative treatments), applied in tank-mixture or sequence, to control glyphosate-resistant weeds in two Persian lime groves (referred to as SM-I and SM-II) of the municipality of Acateno, Puebla, during two years (2014 and 2015). The SM-I and SM-II fields had 243 and 346 weeds/m2, respectively, composed mainly of Bidens pilosa and Leptochloa virgata. Echinochloa colona was also frequent in SM-II. The glyphosate alone treatments (1080, 1440, or 1800 g ae ha−1) presented control levels of the total weed population ranging from 64% to 85% at 15, 30, and 45 d after treatment (DAT) in both fields. Mixtures of glyphosate with grass herbicides such as fluazifop-p-butyl, sethoxydim, and clethodim efficiently controlled E. colona and L. virgata, but favored the regrowth of B. pilosa. The sequential applications of glyphosate + (bromacil + diuron) and glufosinate + oxyfluorfen controlled more than 85% the total weed community for more than 75 days. However, these treatments were between 360% and 390% more expensive (1.79 and 1.89 $/day ha−1 of satisfactory weed control, respectively), compared to the representative treatment (glyphosate 1080 g ae ha−1 = USD $29.0 ha−1). In practical and economic terms, glufosinate alone was the best treatment controlling glyphosate resistant weeds maintaining control levels >80% for at least 60 DAT ($1.35/day ha−1). The rest of the treatments, applied in tank-mix or in sequence with glyphosate, had similar or lower control levels (~70%) than glyphosate at 1080 g ae ha−1. The adoption of glufosiante alone, glufosinate + oxyfluorfen or glyphosate + (bromacil + diuron) must consider the cost of satisfactory weed control per day, the period of weed control, as well as other factors associated with production costs to obtain an integrated weed management in the short and long term.
Chloris distichophylla, suspected of glyphosate resistance (GR), was collected from areas of soybean cultivation in Rio Grande do Sul, Brazil. A comparison was made with a susceptible population (GS) to evaluate the resistance level, mechanisms involved, and control alternatives. Glyphosate doses required to reduce the dry weight (GR50) or cause a mortality rate of 50% (LD50) were around 5.1–3 times greater in the GR population than in the GS population. The shikimic acid accumulation was around 6.2-fold greater in GS plants than in GR plants. No metabolized glyphosate was found in either GR or GS plants. Both populations did not differ in the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) basal activity or in vitro inhibition of EPSPS activity by glyphosate (I50). The maximum glyphosate absorption was observed at 96 hours after treatment (HAT), which was twofold higher in the GS plants than in the GR plants. This confirms the first case of glyphosate resistance in C. distichophylla. In addition, at 96 HAT, the GS plants translocated more 14C-glyphosate than the GR ones. The best options for the chemical control of both C. distichophylla populations were clethodim, quizalofop, paraquat, glufosinate, tembotrione, diuron, and atrazine. The first case of glyphosate resistance in C. distichophylla was due to impaired uptake and translocation. Chemical control using multiple herbicides with different modes of action (MOA) could be a tool used for integrated weed management (IWM) programs.
Bromus catharticus Vahl. has been used as a valuable forage crop, but it has also been noted as a weed of winter crops and an invader in several countries. In Argentina, a putative glyphosate-resistant population of B. catharticus was identified as a consequence of the lack of effective control with glyphosate in the pre-sowing of wheat. Plant survival and shikimate accumulation analysis demonstrated a lower glyphosate-sensitivity of this population in comparison to a susceptible B. catharticus population. The resistant population was 4-fold more resistant to glyphosate than its susceptible counterpart. There was no evidence of target-site mechanisms of glyphosate resistance or an enhanced capacity to metabolize glyphosate in the resistant population. However, the resistant plants showed a lower foliar retention of glyphosate (138.34 μl solution g−1 dry weight vs. 390.79 μl solution g−1 dry weight), a reduced absorption of 14C-glyphosate (54.18 vs. 73.56%) and lower translocation of 14C-glyphosate from the labeled leaf (27.70 vs. 62.36%). As a result, susceptible plants accumulated a 4.1-fold higher concentration of 14C-glyphosate in the roots compared to resistant plants. The current work describes the first worldwide case of glyphosate resistance in B. catharticus. A reduced foliar retention of herbicide, a differential rate of glyphosate entry into leaves and an altered glyphosate translocation pattern would be the most likely mechanisms of glyphosate exclusion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.