The introduction of glyphosate-resistant (GR) crops revolutionized weed management; however, the improper use of this technology has selected for a wide range of weeds resistant to glyphosate, referred to as superweeds. We characterized the high glyphosate resistance level of an Amaranthus hybridus population (GRH)—a superweed collected in a GR-soybean field from Cordoba, Argentina—as well as the resistance mechanisms that govern it in comparison to a susceptible population (GSH). The GRH population was 100.6 times more resistant than the GSH population. Reduced absorption and metabolism of glyphosate, as well as gene duplication of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) or its overexpression did not contribute to this resistance. However, GSH plants translocated at least 10% more 14C-glyphosate to the rest of the plant and roots than GRH plants at 9 h after treatment. In addition, a novel triple amino acid substitution from TAP (wild type, GSH) to IVS (triple mutant, GRH) was identified in the EPSPS gene of the GRH. The nucleotide substitutions consisted of ATA102, GTC103 and TCA106 instead of ACA102, GCG103, and CCA106, respectively. The hydrogen bond distances between Gly-101 and Arg-105 positions increased from 2.89 Å (wild type) to 2.93 Å (triple-mutant) according to the EPSPS structural modeling. These results support that the high level of glyphosate resistance of the GRH A. hybridus population was mainly governed by the triple mutation TAP-IVS found of the EPSPS target site, but the impaired translocation of herbicide also contributed in this resistance.
This document is confidential and is proprietary to the American Chemical Society and its authors. Do not copy or disclose without written permission. If you have received this item in error, notify the sender and delete all copies. Reduced absorption and impaired translocation endows glyphosate resistance in Amaranthus palmeri harvested in GR soybean from Argentina
Euphorbia heterophylla is a weed species that invades extensive crop areas in subtropical regions of Brazil. This species was previously controlled by imazamox, but the continuous use of this herbicide has selected for resistant biotypes. Two biotypes of E. heterophylla from southern Brazil, one resistant (R) and one susceptible (S) to imazamox, were compared. The resistance of the R biotype was confirmed by dose-response assays since it required 1250.2 g ai ha−1 to reduce the fresh weight by 50% versus 7.4 g ai ha−1 for the S biotype. The acetolactate synthase (ALS) enzyme activity was studied using ALS-inhibiting herbicides from five different chemical families. The R biotype required the highest concentrations to reduce this enzyme activity by 50%. A Ser653Asn mutation was found in the ALS gene of the R biotype. The experiments carried out showed that imazamox absorption and metabolism were not involved in resistance. However, greater 14C-imazamox root exudation was found in the R biotype (~70% of the total absorbed imazamox). Target site mutation in the ALS gene is the principal mechanism that explains the imazamox resistance of the R biotype, but root exudation seems to also contribute to the resistance of this biotype.
Glyphosate retention, absorption and translocation with and without adjuvant were examined in Lolium rigidum and Conyza canadensis in greenhouse and laboratory settings to develop an understanding of the influence of the selected adjuvant on glyphosate activity. Tests on whole plants show that the dose of herbicide needed to reduce dry weight by 50% (GR50) or plant survival (LD50) decreases by mixing glyphosate and adjuvant to 22%–24% and 42%–44% for both populations of L. rigidum and C. canadensis, respectively. This improvement in efficacy could be attributed to the higher herbicide retention and lower contact angle of the glyphosate + adjuvant drops on the leaf surface compared to the glyphosate solution alone. Plants of both species treated with 14C-glyphosate + adjuvant absorbed more glyphosate compared to non-adjuvant addition. Furthermore, the movement of the herbicide through the plant was faster and greater with the adjuvant. Our results reveal that the use of adjuvants improves the effectiveness of glyphosate in two of the most important weeds in agricultural crops in Mediterranean countries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.