In the 70s, reports began to appear of phenolic metabolites of brown algae with the characteristics of tannins; these compounds, initially termed phaeophyte tannins, marine algal polyphenols or polyphloroglucinols, are known as phlorotannins, the youngest group of plant polyphenolics. Despite over 40 years of research in phlorotannins, this area is still in the exponential growth phase; however, several reviews have appeared, primarily concerning their biological activity. This review focuses on techniques for the extraction, isolation and chromatographic purification of approximately 150 phlorotannins during these four decades. Due to the high structural diversity of these polyphenols and the difficulty of classification, these topics are also reviewed: structural diversity and classification, extraction and preparative chromatography, thin-layer chromatography, and analytical high-performance liquid chromatography (HPLC) and HPLC-mass spectrometry. These techniques have primarily been used for separation monitoring and qualitative profiles, and not too many reports have been published on the development of quantification or quality control.
Abstract:The Melastomataceae family, the seventh largest flowering plants, has been studied in several fronts of natural product chemistry, including terpenoids, simple phenolics, flavonoids, quinones, lignans and their glycosides, as well as a vast range of tannins or polyphenols. This review concerns the phenolic and polyphenolic metabolites described in the literature for several genera of this family, the mode of isolation and purification, and the structure elucidation of these new natural products that has been achieved by extensive spectral analyses, including ESI-MS, 1 H-, 13 C-NMR spectra and two-dimensional experiments, COSY, TOCSY, J-resolved, NOESY, HMQC, DEPT, and HMBC, as well as chemical and enzymatic degradations and the chemotaxonomic meaning. Finally, a general biogenetic pathway map for ellagitannins is proposed on the bases of the most plausible free radical C-O oxidative coupling.
A bio-guided study of leaf extracts allowed the isolation of two new macrobicyclic hydrolysable tannins, namely merianin A (1) and merianin B (2), and oct-1-en-3-yl β-xylopyranosyl-(1”-6’)-β-glucopyranoside (3) from Meriania hernandoi, in addition to 11 known compounds reported for the first time in the Meriania genus. The structures were elucidated by spectroscopic analyses including one- and two-dimensional NMR techniques and mass spectrometry. The bioactivities of the compounds were determined by measuring the DPPH radical scavenging activity and by carrying out antioxidant power assays (FRAP), etiolated wheat coleoptile assays and phytotoxicity assays on the standard target species Lycopersicum esculentum W. (tomato). Compounds 1 and 2 exhibited the best free radical scavenging activities, with FRS50 values of 2.0 and 1.9 µM, respectively.
Two new flavonol glycosides were isolated from the leaves of Siparuna gigantotepala. Their structures were determined to be kaempferol 3-O-β-xylopyranosyl-(1→2)-α-arabinofuranoside (1) and kaempferol 3,7-di-O-methyl-4'-O-α-rhamnopyranosyl-(1→2)-β-glucopyranoside (2). In addition, three known flavonol glycosides, rutin (3), kaempferol 3-O-rutinoside (4), and kaempferol 3,7-di-O-methyl-4'-O-rutinoside (5), and three flavonol aglycones, quercetin (6), kaempferol 3,7-dimethyl ether (7), and kaempferol 3,7,4'-trimethyl ether (8), were also isolated and are reported here for the first time in this species. The structures of compounds 1 and 2 were established on the basis of their LC-MS and one- and two-dimensional (1D)- and (2D)-NMR spectroscopic analyses, combined with acid methanolysis and silylation of sugar moieties for GC-MS. Evaluation of the antioxidant activity, conducted in the 96-well plate format, showed that the flavonoids isolated possess strong 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging activity and moderate oxygen radical absorption capacity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.