We have achieved a certified 25.1% conversion efficiency in a large area (151.9 cm2) heterojunction (HJ) crystalline Si (c-Si) solar cell with amorphous Si (a-Si) passivation layer. This efficiency is a world record in a both-side-contacted c-Si solar cell. Our high efficiency HJ c-Si solar cells are investigated from the standpoint of the effective minority carrier lifetime (τe), and the impact of τe on fill factor (FF) is discussed. The τe measurements of our high efficiency HJ c-Si solar cells reveal that τe at an injection level corresponding to an operation point of maximum power is dominated by the carrier recombination at the a-Si/c-Si interface. By optimization of the process conditions, the carrier recombination at the a-Si/c-Si interface is reduced, which leads to an improvement of the FF by an absolute value of 2.7%, and a conversion efficiency of 25.1% has been achieved. These results indicate that the reduction of carrier recombination centers at the a-Si/c-Si interface should be one of the most crucial issues for further improvement of FF even in the HJ c-Si solar cells with efficiency over 25%.
We have applied an optical splitting system in order to achieve very high conversion efficiency for a full spectrum multi-junction solar cell. This system consists of multiple solar cells with different band gap optically coupled via an “optical splitter.” An optical splitter is a multi-layered beam splitter with very high reflection in the shorter-wave-length range and very high transmission in the longer-wave-length range. By splitting the incident solar spectrum and distributing it to each solar cell, the solar energy can be managed more efficiently. We have fabricated optical splitters and used them with a wide-gap amorphous silicon (a-Si) solar cell or a CH3NH3PbI3 perovskite solar cell as top cells, combined with mono-crystalline silicon heterojunction (HJ) solar cells as bottom cells. We have achieved with a 550 nm cutoff splitter an active area conversion efficiency of over 25% using a-Si and HJ solar cells and 28% using perovskite and HJ solar cells.
Generally, the analysis of corneal topography involves fitting the raw data to a parametric geometric model that includes a regular basis surface, plus some sort of polynomial expansion to adjust the more irregular residual component. So far, these parametric models have been used in their canonical form, ignoring that the observation (keratometric) coordinate system is different from corneal axes of symmetry. Here we propose, instead, to use the canonical form when the topography is referenced to the intrinsic corneal system of coordinates, defined by its principal axes of symmetry. This idea is implemented using the general expression of an ellipsoid to fit the raw data given by the instrument. Then, the position and orientation of the three orthogonal semiaxes of the ellipsoid, which define the intrinsic Cartesian system of coordinates for normal corneas, can be identified by passing to the canonical form, by standard linear algebra. This model has been first validated experimentally obtaining significantly lower values for rms fitting error as compared with previous standard models: spherical, conical, and biconical. The fitting residual was then adjusted by a Zernike polynomial expansion. The topographies of 123 corneas were analyzed obtaining their radii of curvature, conic constants, Zernike coefficients, and the direction and position of the optical axis of the ellipsoid. The results were compared with those obtained using the standard models. The general ellipsoid model provides more negative values for the conic constants and lower apex radii (more prolate shapes) than the standard models applied to the same data. If the data are analyzed using standard models, the resulting mean shape of the cornea is consistent with previous studies, but when using the ellipsoid model we find new interesting features: The mean cornea is a more prolate ellipsoid (apical power 50 D), the direction of the optical axis is about 2.3 degrees nasal, and the residual term shows three Zernike coefficients significantly higher than zero (third-order trefoil and fourth- and sixth-order spherical). These three nonzero Zernike coefficients are responsible for most of the higher-order aberrations of the average cornea. Finally, we propose and implement a simple method for three-dimensional registration of corneal topographies, passing from the general to the canonical form of the ellipsoid.
Abstract:Since the 1800s the global average CO 2 mixing ratio has increased and has been related to increases in surface air temperature (0.6 ± 0.2°C) and variations in precipitation patterns among other weather and climatic variables. The Small Island Developing States (SIDS), according to the 2001 report of the Intergovernmental Panel on Climate Change (IPCC), are likely to be among the most seriously impacted regions on Earth by global climate changes. In this work, three climate change scenarios are investigated using the Parallel Climate Model (PCM) to study the impact of the global anthropogenic CO 2 concentration increases on the Caribbean climate. A climatological analysis of the Caribbean seasonal climate variation was conducted employing the National Center for Environmental Prediction (NCEP) reanalysis data, the Xie-Arkin precipitation and the Reynolds-Smith Sea Surface Temperature (SST) observed data. The PCM is first evaluated to determine its ability to predict the present time Caribbean climatology. The PCM tends to under predict the SSTs, which along with the cold advection controls the rainfall variability. This seems to be a main source of bias considering the low model performance to predict rainfall activity over the Central and southern Caribbean. Future predictions indicate that feedback processes involving evolution of SST, cloud formation, and solar radiative interactions affect the rainfall annual variability simulated by PCM from 1996 to 2098. At the same time two large-scale indices, the Southern Oscillation Index (SOI) and the North Atlantic Oscillation (NAO) are strongly related with this rainfall annual variability. A future climatology from 2041 to 2058 is selected to observe the future Caribbean condition simulated by the PCM. It shows, during this climatology range, a future warming of approximately 1°C (SSTs) along with an increase in the rain production during the Caribbean wet seasons (early and late rainfall seasons). Although the vertical wind shear is strengthened, it typically remains lower than 8 m/s, which along with SST > 26.5°C provides favorable conditions for possible future increases in tropical storm frequency.
[1] Using a general-circulation climate model to drive an energy-use model, we projected changes in USA energy-use and in corresponding fossil-fuel CO 2 emissions through year 2025 for a low (1.2°C) and a high (3.4°C) temperature response to CO 2 doubling. The low-DT scenario had a cumulative (2003 -2025) energy increase of 1.09 quadrillion Btu (quads) for cooling/heating demand. Northeastern states had net energy reductions for cooling/ heating over the entire period, but in most other regions energy increases for cooling outweighed energy decreases for heating. The high-DT scenario had significantly increased warming, especially in winter, so decreased heating needs led to a cumulative (2003 -2025) heating/ cooling energy decrease of 0.82 quads. In both scenarios, CO 2 emissions increases from electricity generation outweighed CO 2 emissions decreases from reduced heating needs. The results reveal the intricate energyeconomy structure that must be considered in projecting consequences of climate warming for energy, economics, and fossil-fuel carbon emissions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.