BackgroundGraphene and graphene derivative nanoplatelets represent a new generation of nanomaterials with unique physico-chemical properties and high potential for use in composite materials and biomedical devices. To date little is known about the impact graphene nanomaterials may have on human health in the case of accidental or intentional exposure. The objective of this study was to assess the cytotoxic potential of graphene nanoplatelets with different surface chemistry towards a human hepatoma cell line, Hep G2, and identify the underlying toxicity targets.MethodsGraphene oxide (GO) and carboxyl graphene (CXYG) nanoplatelet suspensions were obtained in water and culture medium. Size frequency distribution of the suspensions was determined by means of dynamic light scattering. Height, lateral dimension and shape of the nanoplatelets were determined using atomic force and electron microscopy. Cytotoxicity of GO and CXYG nanoplatelets was assessed in Hep G2 cells using a battery of assays covering different modes of action including alterations of metabolic activity, plasma membrane integrity and lysosomal function. Induction of oxidative stress was assessed by measuring intracellular reactive oxygen species levels. Interaction with the plasma membrane, internalization and intracellular fate of GO and CXYG nanoplatelets was studied by scanning and transmission electron microscopy.ResultsSupplementing culture medium with serum was essential to obtain stable GO and CXYG suspensions. Both graphene derivatives had high affinity for the plasma membrane and caused structural damage of the latter at concentrations as low as 4 μg/ml. The nanoplatelets penetrated through the membrane into the cytosol, where they were concentrated and enclosed in vesicles. GO and CXYG accumulation in the cytosol was accompanied by an increase in intracellular reactive oxygen species (ROS) levels, alterations in cellular ultrastructure and changes in metabolic activity.ConclusionsGO and CXYG nanoplatelets caused dose- and time-dependent cytotoxicity in Hep G2 cells with plasma membrane damage and induction of oxidative stress being important modes of toxicity. Both graphene derivatives were internalized by Hep G2, a non-phagocytotic cell line. Moreover, they exerted no toxicity when applied at very low concentrations (< 4 μg/ml). GO and CXYG nanoplatelets may therefore represent an attractive material for biomedical applications.
Tests with vertebrates are an integral part of environmental hazard identification and risk assessment of chemicals, plant protection products, pharmaceuticals, biocides, feed additives and effluents. These tests raise ethical and economic concerns and are considered as inappropriate for assessing all of the substances and effluents that require regulatory testing. Hence, there is a strong demand for replacement, reduction and refinement strategies and methods. However, until now alternative approaches have only rarely been used in regulatory settings. This review provides an overview on current regulations of chemicals and the requirements for animal tests in environmental hazard and risk assessment. It aims to highlight the potential areas for alternative approaches in environmental hazard identification and risk assessment. Perspectives and limitations of alternative approaches to animal tests using vertebrates in environmental toxicology, i.e. mainly fish and amphibians, are discussed. Free access to existing (proprietary) animal test data, availability of validated alternative methods and a practical implementation of conceptual approaches such as the Adverse Outcome Pathways and Integrated Testing Strategies were identified as major requirements towards the successful development and implementation of alternative approaches. Although this article focusses on European regulations, its considerations and conclusions are of global relevance.
The scientific community has invested effort into standardising methodologies for the regulatory ecotoxicity testing of engineered nanomaterials (ENMs), but the practical requirements for bioaccumulation testing of ENMs have been given less attention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.