BackgroundGraphene and graphene derivative nanoplatelets represent a new generation of nanomaterials with unique physico-chemical properties and high potential for use in composite materials and biomedical devices. To date little is known about the impact graphene nanomaterials may have on human health in the case of accidental or intentional exposure. The objective of this study was to assess the cytotoxic potential of graphene nanoplatelets with different surface chemistry towards a human hepatoma cell line, Hep G2, and identify the underlying toxicity targets.MethodsGraphene oxide (GO) and carboxyl graphene (CXYG) nanoplatelet suspensions were obtained in water and culture medium. Size frequency distribution of the suspensions was determined by means of dynamic light scattering. Height, lateral dimension and shape of the nanoplatelets were determined using atomic force and electron microscopy. Cytotoxicity of GO and CXYG nanoplatelets was assessed in Hep G2 cells using a battery of assays covering different modes of action including alterations of metabolic activity, plasma membrane integrity and lysosomal function. Induction of oxidative stress was assessed by measuring intracellular reactive oxygen species levels. Interaction with the plasma membrane, internalization and intracellular fate of GO and CXYG nanoplatelets was studied by scanning and transmission electron microscopy.ResultsSupplementing culture medium with serum was essential to obtain stable GO and CXYG suspensions. Both graphene derivatives had high affinity for the plasma membrane and caused structural damage of the latter at concentrations as low as 4 μg/ml. The nanoplatelets penetrated through the membrane into the cytosol, where they were concentrated and enclosed in vesicles. GO and CXYG accumulation in the cytosol was accompanied by an increase in intracellular reactive oxygen species (ROS) levels, alterations in cellular ultrastructure and changes in metabolic activity.ConclusionsGO and CXYG nanoplatelets caused dose- and time-dependent cytotoxicity in Hep G2 cells with plasma membrane damage and induction of oxidative stress being important modes of toxicity. Both graphene derivatives were internalized by Hep G2, a non-phagocytotic cell line. Moreover, they exerted no toxicity when applied at very low concentrations (< 4 μg/ml). GO and CXYG nanoplatelets may therefore represent an attractive material for biomedical applications.
Graphene and its derivatives are an emerging class of carbon nanomaterial with great potential for a broad range of industrial and consumer applications. However, their increasing production and use is expected to result in release of nano-sized graphene platelets into the environment, where they may interact with chemical pollutants modifying their fate and toxic potential. The objective of this study was to assess whether graphene nanoplatelets can act as vector for aromatic environmental pollutants increasing their cellular uptake and associated hazardous effects in vitro. For this purpose, cell cultures of the topminnow fish (Poeciliopsis lucida) hepatoma cell line PLHC-1 were simultaneously (and successively) exposed to graphene nanoplatelets (graphene oxide (GO) or carboxyl graphene (CXYG)) and an aryl hydrocarbon receptor (AhR) agonist (β-naphthoflavone (β-NF), benzo(k)fluoranthene (BkF) or 3,3',4,4',5,5'-hexachlorobiphenyl (PCB169)). Following exposure cytochrome P450 1A (Cyp1A) induction was assessed by measuring cyp1A mRNA expression levels using reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) and Cyp1A-dependent ethoxyresorufin-O-deethylase (EROD) activity. It was observed that pre- and co-exposure of cells to GO and CXYG nanoplatelets had a potentiating effect on β-NF, BkF, and PCB169-dependent Cyp1A induction suggesting that graphene nanoplatelets increase the effective concentration of AhR agonists by facilitating their passive diffusion into the cells by damaging the cells' plasma membrane and/or by transporting them over the plasma membrane via a Trojan horse-like mechanism. The results demonstrate the existence of combination effects between nanomaterials and environmental pollutants and stress the importance of considering these effects when evaluating their respective hazard.
Freshwater gastropods are frequently used as model organisms to assess the effects of certain chemical substances. Among them Radix balthica and Lymnaea stagnalis are commonly used in the laboratory, mesocosm and fields tests. In order to determine the effects of pollutants and more particularly endocrine disrupting substances on the reproduction of these organisms, histopathological analyses can be used. Because data are still scarce in the literature, knowledge development on anatomy of reproductive tissues and gametogenesis is a preliminary step before any studies on the impact of contaminants on the reproduction of these gastropods. The characterization of the anatomy and gametogenesis of Radix balthica and Lymnaea stagnalis was thus performed in this study. Important morphological differences exist between the two species. Despite this, the gonads of the two gastropods species have similar histological structure. In both species, spermatogonia are clustered; spermatozoids are anchored in the Sertoli cells and the male cells alternate with the female cells that rest on the epithelium of the hermaphroditic gland. This study is a prerequisite for any further histopathological studies on contaminated individuals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.