This mini-review covers chelating sorbents anchored to silica gel and their analytical applications for the preconcentration, separation and determination of trace metal ions, focussing mainly on the last 20 years. The article summarizes also the experience gathered by our research group in the synthesis and characterization of new modified silica gels "via silanization", and their affinity toward selective extraction and separation of trace elements. The introduction of 1,5-bis(di-2-pyridyl)methylene thiocarbohydrazide silica gel (DPTH-gel) and methylthiosalicylate silica gel (TS-gel) chelating sorbents in trace and ultratrace analysis provide vital breakthroughs in preconcentration methods. These home-made materials allow certain analytes to be selectively extracted from complex matrices without matrix interference and good detection limits. The advantages of these new chelating sorbents in comparison with 8-hydroxyquinoline chelating sorbent immobilized on silica gel are discussed.
A simple, sensitive, low-cost and rapid, flow injection system for the on-line preconcentration of lead by sorption on a microcolumn packed with silica gel funtionalized with methylthiosalicylate (TS-gel) was developped. The metal is directly retained on the sorbent column and subsequently then eluted from it by EDTA. Five variables (sample flow rate, eluent flow rate, eluent concentration, pH and buffer concentration) were considered as factors in the optimization process. Interactions between analytical factors and their optimal levels were investigated using two level factorial and Box-Behnken designs. The optimum conditions established were applied to the determination of lead by flow injection inductively coupled plasma atomic emission spectrometry (FI-ICP-AES). The proposed method has a linear calibration range from 10 to at least 500 ng ml −1 of lead. At a sample frequency of 24 h −1 and a 120 s preconcentration time, the enrichment factor was 41, the detection limit was 15.3 ng ml −1 (S/N = 3) and the precision, expressed as relative standard deviation, was 0.9% (at 100 ng ml −1 ). Validation of the developed method was carried out against electrothermal atomic absorption spectrometry analysis without statistically significant differences between the proposed method and the atomic absorption method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.