This study assessed 16 different honey samples in order to select the best one for therapeutic purposes. First, a study of honey's main bioactive compounds was carried out. Then phenolic profiles were determined and specific compounds quantified using a HPLC system coupled to a mass spectrometer. Then, antioxidant activity, by three in vitro methods, and antibacterial activity against reference strains and clinical isolates were evaluated. Great variability among samples was observed regarding ascorbic acid (between 0.34 ± 0.00 and 75.8 ± 0.41 mg/100 g honey; p < 0.001), total phenolic compounds (between 23.1 ± 0.83 and 158 ± 5.37 mg/100 g honey; p < 0.001), and total flavonoid contents (between 1.65 ± 0.11 and 5.93 ± 0.21 mg/100 g honey; p < 0.001). Forty-nine different phenolic compounds were detected, but only 46 of them were quantified by HPLC. The concentration of phenolic compounds and the phenolic profiles varied widely among samples (between 1.06 ± 0.04 and 18.6 ± 0.73 mg/100 g honey; p < 0.001). Antioxidant activity also varied significantly among the samples. All honey varieties exhibited antibacterial activity against both reference and clinical strains (effective concentrations ranged between 0.05 and 0.40 g/mL depending on the honey sample and bacteria tested). Overall, samples with better combinations of bioactive properties were avocado and chestnut honeys.
Fatty acid metabolism was studied in periportal and perivenous hepatocytes isolated by the method of Chen & Katz [Biochem. J. (1988) 255, 99-104]. The rate of fatty acid synthesis and the activity of acetyl-CoA carboxylase were markedly enhanced in perivenous hepatocytes as compared with periportal cells. However, the response of these two parameters to short-term modulation by cellular effectors such as the hormones insulin and glucagon, the phorbol ester 4 beta-phorbol 12 beta-myristate 13 alpha-acetate and the xenobiotics ethanol and acetaldehyde was similar in the two zones of the liver. In addition, perivenous hepatocytes showed a higher capacity of esterification of exogenous fatty acids into both cellular and very-low-density-lipoprotein lipids. Nevertheless, no difference between the two cell sub-populations seemed to exist in relation to the secretion of very-low-density lipoproteins. On the other hand, the rate of fatty acid oxidation was increased in periportal cells. This could be accounted for by a higher activity of carnitine palmitoyltransferase I and a lower sensitivity of this enzyme to inhibition by malonyl-CoA in the periportal zone. No differences were observed between periportal and perivenous hepatocytes in relation to the short-term response of fatty acid oxidation and carnitine palmitoyltransferase I activity to the cellular modulators mentioned above. In conclusion, our results show that: (i) lipogenesis is achieved at higher rates in the perivenous zone of the liver, whereas the fatty-acid-oxidative process occurs with a certain preference in the periportal area of this organ; (ii) the short-term response of the different fatty-acid-metabolizing pathways to cellular effectors is quantitatively similar in the two zones of the liver.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.