Reduction of minimum supply requirements is a crucial aspect to decrease the power consumption in VLSI systems. A high-performance capacitance multiplier able to operate with supplies as low as ±0.25 V is presented. It is based on adaptively biased class-AB current mirrors which provide high current efficiency. Measurement results of a factor 11 capacitance multiplier fabricated in 180-nm CMOS technology verify theoretical claims. Moreover, low-voltage precision rectifiers based on the same class-AB current mirrors are designed and fabricated in the same CMOS process. They generate output currents over 100 times larger than the quiescent current. Both proposed circuits have 300-nW static power dissipation when operating with ±0.25-V supplies.
This paper presents a system based on electronic equipments, standard mobile phones and WLAN networks for managing evacuation routes, or for obtaining information about victims' location and status, whenever a building collapses due to a disaster like earthquakes. The system is based on the standard Bluetooth specification to guarantee their application in indoor areas. The electronic equipments, their specifications and communication links, and the implications and viability of the entire system are analyzed in this work.
Perimeter detection systems detect intruders penetrating protected areas, but modern solutions require the combination of smart detectors, information networks and controlling software to reduce false alarms and extend detection range. The current solutions available to secure a perimeter (infrared and motion sensors, fiber optics, cameras, radar, among others) have several problems, such as sensitivity to weather conditions or the high failure alarm rate that forces the need for human supervision. The system exposed in this paper overcomes these problems by combining a perimeter security system based on CEMF (control of electromagnetic fields) sensing technology, a set of video cameras that remain powered off except when an event has been detected. An autonomous drone is also informed where the event has been initially detected. Then, it flies through computer vision to follow the intruder for as long as they remain within the perimeter. This paper covers a detailed view of how all three components cooperate in harmony to protect a perimeter effectively, without having to worry about false alarms, blinding due to weather conditions, clearance areas, or privacy issues. The system also provides extra information of where the intruder is or has been, at all times, no matter whether they have become mixed up with more people or not during the attack.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.