Acinetobacter baumannii is a cause of healthcare-associated infections. Although A. baumannii is an opportunistic pathogen, its infections are notoriously difficult to treat due to intrinsic and acquired antimicrobial resistance, often limiting effective therapeutic options. A. baumannii can survive for long periods in the hospital environment, particularly on inanimate surfaces. Such environments may act as a reservoir for cross-colonization and infection outbreaks and should be considered a substantial factor in infection control practices. Moreover, clothing of healthcare personnel and gadgets may play a role in the spread of nosocomial bacteria. A link between contamination of hospital surfaces and A. baumannii infections or between its persistence in the environment and its virulence has not yet been established. Bacteria under stress (i.e., long-term desiccation in hospital setting) could conserve factors that favor infection. To investigate whether desiccation and/or starvation may be involved in the ability of certain strains of A. baumannii to retain virulence factors, we have studied five well-characterized clinical isolates of A. baumannii for which survival times were determined under simulated hospital conditions. Despite a considerable reduction in the culturability over time (up to 88% depending on strain and the condition tested), some A. baumannii strains were able to maintain their ability to form biofilms after rehydration, addition of nutrients, and changing temperature. Also, after long-term desiccation, several clinical strains were able to grow in the presence of non-immune human serum as fine as their non-stressed homologs. Furthermore, we also show that the ability of bacterial strains to kill Galleria mellonella larvae does not change although A. baumannii cells were stressed by long-term starvation (up to 60 days). This means that A. baumannii can undergo a rapid adaptation to both the temperature shift and nutrients availability, conditions that can be easily found by bacteria in a new patient in the hospital setting.
Solid organ transplant (SOT) recipients are especially at risk of developing infections by multidrug resistant bacteria (MDR). In this study, the biofilm-forming capability of 209 MDR strains ( Escherichia coli n = 106, Klebsiella pneumoniae n = 78, and Enterobacter spp. n = 25) isolated from rectal swabs in the first 48 hours before or after kidney (93 patients), liver (60 patients) or kidney/pancreas transplants (5 patients) were evaluated by using a microplate assay. Thirty-nine strains were isolated before transplant and 170 strains were isolated post-transplant. Overall, 16% of E. coli strains, 73% of K. pneumoniae strains and 4% Enterobacter strains showed moderate or strong biofilm production. Nine strains isolated from infection sites after transplantation were responsible of infections in the first month. Of these, 4 K. pneumoniae , 1 E. coli and 1 Enterobacter spp. strains isolated pre-transplant or post-transplant as colonizers caused infections in the post-transplant period. Our results suggest that in vitro biofilm formation could be an important factor for adhesion to intestine and colonization in MDR K. pneumoniae strains in SOT recipients, but this factor appears to be less important for MDR E. coli and Enterobacter spp.
The important nosocomial pathogen Acinetobacter baumannii presents a quorum sensing (QS) system (abaI/abaR) mediated by acyl-homoserine-lactones (AHLs) and several quorum quenching (QQ) enzymes. However, the roles of this complex network in the control of the expression of important virulence-related phenotypes such as surface-associated motility and biofilm formation is not clear. Therefore, the effect of the mutation of the AHL synthase AbaI, and the exogenous addition of the QQ enzyme Aii20J on surface-associated motility and biofilm formation by A. baumannii ATCC R 17978 TM was studied in detail. The effect of the enzyme on biofilm formation by several multidrug-resistant A. baumannii clinical isolates differing in their motility pattern was also tested. We provide evidence that a functional QS system is required for surface-associated motility and robust biofilm formation in A. baumannii ATCC R 17978 TM. Important differences were found with the well-studied strain A. nosocomialis M2 regarding the relevance of the QS system depending on environmental conditions The in vitro biofilm-formation capacity of A. baumannii clinical strains was highly variable and was not related to the antibiotic resistance or surface-associated motility profiles. A high variability was also found in the sensitivity of the clinical strains to the action of the QQ enzyme, revealing important differences in virulence regulation between A. baumannii isolates and confirming that studies restricted to a single strain are not representative for the development of novel antimicrobial strategies. Extracellular DNA emerges as a key component of the extracellular matrix in A. baumannii biofilms since the combined action of the QQ enzyme Aii20J and DNase reduced biofilm formation in all tested strains. Results demonstrate that QQ strategies in combination with other enzymatic treatments such as DNase could represent an alternative approach for the prevention of A. baumannii colonization and survival on surfaces and the prevention and treatment of infections caused by this pathogen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.