Corynebacterium striatum is a nosocomial opportunistic pathogen increasingly associated with a wide range of human infections and is often resistant to several antibiotics. We investigated the susceptibility of 63 C. striatum isolated at the Farhat-Hached hospital, Sousse (Tunisia), during the period 2011–2014, to a panel of 16 compounds belonging to the main clinically relevant classes of antimicrobial agents. All strains were susceptible to vancomycin, linezolid, and daptomycin. Amikacin and gentamicin also showed good activity (MICs90 = 1 and 2 mg/L, respectively). High rates of resistance to penicillin (82.5%), clindamycin (79.4%), cefotaxime (60.3%), erythromycin (47.6%), ciprofloxacin (36.5%), moxifloxacin (34.9%), and rifampicin (25.4%) were observed. Fifty-nine (93.7%) out of the 63 isolates showed resistance to at least one compound and 31 (49.2%) were multidrug-resistant. Twenty-nine resistance profiles were distinguished among the 59 resistant C. striatum. Most of the strains resistant to fluoroquinolones showed a double mutation leading to an amino acid change in positions 87 and 91 in the quinolone resistance-determining region of the gyrA gene. The 52 strains resistant to penicillin were positive for the gene bla, encoding a class A β-lactamase. Twenty-two PFGE patterns were identified among the 63 C. striatum, indicating that some clones have spread within the hospital.
The vegetal world constitutes the main factory of chemical products, in particular secondary metabolites like phenols, phenolic acids, terpenoids, and alkaloids. Many of these compounds are small molecules with antibacterial activity, although very few are actually in the market as antibiotics for clinical practice or as food preservers. The path from the detection of antibacterial activity in a plant extract to the practical application of the active(s) compound(s) is long, and goes through their identification, purification, in vitro and in vivo analysis of their biological and pharmacological properties, and validation in clinical trials. This review presents an update of the main contributions published on the subject, focusing on the compounds that showed activity against multidrug-resistant relevant bacterial human pathogens, paying attention to their mechanisms of action and synergism with classical antibiotics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.