One of the diseases that could affect diabetic patients is the diabetic foot problem. Unnoticed minor injuries and subsequent infection can lead to ischemic ulceration, and may end in a foot amputation. Preliminary studies have shown that there is a positive relationship between increased skin temperature and the pre–ulceration phase. Hence, we have carried out a review on wearables, medical devices, and sensors used specifically for collecting vital data. In particular, we are interested in the measure of the foot–temperature. Since there is a large amount of this type of medical wearables, we will focus on those used to measure temperature and developed in Spain.
The efficiency of electric motors is being improved every day and projects with design variations can improve their performance. Among electric motors, the Permanent Magnet Synchronous Machine (PMSM) is being increasingly used, because of its growing use in electric vehicles. Simulating design variations using the Finite Element Method (FEM) can improve PMSM design, and by optimizing the parameters based on the FEM, even better results can be achieved. The design of the PMSM stator slots must be evaluated, as conductors are accommodated and an electrical potential is applied at this location. The FEM parameters are varied, and the results can be used to build an approximate model, known as a proxy model. The proxy model can then be used in a mathematical programming problem to optimize the design of stators that have less electric field in certain regions, thus reducing the chance of developing a failure. The results of the proposed methodology show that its application is promising for machine design and can also be used for the design of other systems.
One important health problem that could affect diabetics is diabetic foot syndrome, as risk of ulceration, neuropathy, ischemia and infection. Unnoticed minor injuries, subsequent infection and ulceration may end in a foot amputation. Preliminary studies have shown a relationship between increased skin temperature and asymmetries between the same regions of both feet. In the preulceration phase, to develop a smart device able to control the temperature of these types of patients to avoid this risk might be very useful. A statistical analysis has been carried out with a sample of foot temperature data obtained from 93 individuals, of whom 44 are diabetics and 49 nondiabetics and among them 43% are men and 57% are women. Data obtained with a thermographic camera has been successful in providing a set of regions of interest, where the temperature could influence the individual, and the behavior of several variables that could affect these subjects provides a mathematical model. Finally, an in-depth analysis of existing sensors situated in those positions, namely, heel, medial midfoot, first metatarsal head, fifth metatarsal head, and first toe has allowed for the development of a smart sock to store temperatures obtained every few minutes in a mobile device.
In our day to day life, the environmental conditions, and especially the temperature and humidity of the air that surrounds us, go unnoticed. However, in many cases, these parameters play an important role in the use of materials since they modify their electrical properties. It is necessary to predict what this behaviour will be as these environmental conditions can introduce or improve desirable properties in the material, especially of textiles. The nature of these is to be dielectric, and therefore have a minimal DC electrical conductivity that is currently impossible to measure directly, so a methodology has been proposed to obtain the DC electrical resistivity through the method of discharging a condenser. For this purpose, a system was developed based on a static voltmeter, a climatic chamber and a control and data capture units. In order to validate the proposed system and methodology a study using both is described in this work. The study made it possible to verify that the most influential factor in establishing the values of the electrical parameters of a textile material is the nature of the fibres of which it is composed, although the influence of environmental conditions in fibres is also significant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.