Summary• To understand key mechanisms leading to stabilized allopolyploid species, we characterized the meiotic behaviour of wheat allohexaploids in relation to structural and genetic changes.• For that purpose, we analysed first generations of synthetic allohexaploids obtained through interspecific hybridization, followed by spontaneous chromosome doubling, between several genotypes of Triticum turgidum and Aegilops tauschii wheat species, donors of AB and D genomes, respectively.• As expected for these Ph1 (Pairing homoeologous 1) gene-carrying allopolyploids, chromosome pairing at metaphase I of meiosis essentially occurs between homologous chromosomes. However, the different synthetic allohexaploids exhibited progenitor-dependent meiotic irregularities, such as incomplete homologous pairing, resulting in univalent formation and leading to aneuploidy in the subsequent generation.• Stability of the synthetic allohexaploids was shown to depend on the considered genotypes of both AB and D genome progenitors, where few combinations compare to the natural wheat allohexaploid in terms of regularity of meiosis and euploidy. Aneuploidy represents the only structural change observed in these synthetic allohexaploids, as no apparent DNA sequence elimination or rearrangement was observed when analysing euploid plants with molecular markers, developed from expressed sequence tags (ESTs) as well as simple sequence repeat (SSR) and transposable element sequences.
Summary
The present study aims to understand regulation of gene expression in synthetic and natural wheat (Triticum aestivum) allohexaploids, that combines the AB genome of Triticum turgidum and the D genome of Aegilops tauschii; and which we have recently characterized as genetically stable.
We conducted a comprehensive genome‐wide analysis of gene expression that allowed characterization of the effect of variability of the D genome progenitor, the intergenerational stability as well as the comparison with natural wheat allohexaploid. We used the Affymetrix GeneChip Wheat Genome Array, on which 55 049 transcripts are represented.
Additive expression was shown to represent the majority of expression regulation in the synthetic allohexaploids, where expression for more than c. 93% of transcripts was equal to the mid‐parent value measured from a mixture of parental RNA. This leaves c. 2000 (c. 7%) transcripts, in which expression was nonadditive. No global gene expression bias or dominance towards any of the progenitor genomes was observed whereas high intergenerational stability and low effect of the D genome progenitor variability were revealed.
Our study suggests that gene expression regulation in wheat allohexaploids is established early upon allohexaploidization and highly conserved over generations, as demonstrated by the high similarity of expression with natural wheat allohexaploids.
Stripe rust, caused by Puccinia striiformis f. tritici, is one of the most widespread and destructive wheat diseases in areas where cool temperatures prevail. The wheat cv. Renan, carrying the specific gene Yr17, has shown effective resistance for a long time, even though some pathotypes overcame the Yr17 gene. The objectives of this study were to locate and map genetic loci associated with adult-plant resistance (APR) to stripe rust in a recombinant inbred line population derived from a cross between Renan (resistant) and Récital (susceptible). Field assays were performed for 4 years (1995, 1996, 2005, and 2006) to score disease-progress data and identify APR quantitative trait loci (QTLs). Three QTLs, QYr.inra-2BS, QYr.inra-3BS, and QYr.inra-6B, with resistance alleles derived from Renan were detected in 1995 to 1996 with the 237E141 pathotype, which is avirulent against genotypes carrying Yr17. These QTLs were stable and explained a major part of the phenotypic variation seen in 2005 to 2006, when the 237E141 V17 pathotype was used. Each of these QTLs contributed approximately 4 to 15% of the phenotypic variance and was effective at different adult plant stages. Interactions were observed between some markers of the Yr17 gene and three Renan QTLs: QYr.inra-2BS, QYr.inra-3BS, and QYr.inra-6B. Resistance based on the combination of different APR types should provide durable resistance to P. striiformis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.