Zanthoxylum paracanthum Kokwaro (Rutaceae) is an endemic Kenyan and Tanzanian plant used in folk medicine by local populations. Although other Zanthoxylum species have been studied, only Z. paracantum stem extracts have been profiled, even though the roots are also used as herbal remedies. As root extracts may be another source of pharmaceutical compounds, the CH2Cl2/MeOH (1:1) root bark extract was studied in this report. Eight root bark compounds were isolated and their structural identities were confirmed by mass spectrometry (MS) and nuclear magnetic resonance (NMR) (using COSY, HSQC, NOESY and HMBC) analyses. The structural identities were determined as follows: the fatty acid—myristic acid (1); the sterol—stigmasterol (2); the lignan—sesamin (3); two β-carboline alkaloids—10-methoxycanthin-6-one (6) and canthin-6-one (7); and three phenanthridine alkaloids—8-acetonyldihydrochelerythrine (4), arnottianamide (5) and 8-oxochelerythrine (8). Some of these compounds were identified in the species for the first time. These compounds and the extract were then tested in vitro against methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli (ATCC 25922), Staphylococcus aureus (ATCC 29213) and Candida albicans (ATCC 10231) before tests for antiproliferative activity against the human breast cancer (HCC 1395), human prostate cancer (DU 145) and normal (Vero E6) cell lines were conducted. Minimum inhibition concentration values of 3.91, 1.95, 0.98 and 7.81 µg/mL against MRSA, S. aureus, E. coli and C. albicans, respectively, were recorded. Among the isolates, canthin-6-one was the most active, followed by 10-methoxycanthin-6-one. The root extract and some of the compounds also had antiproliferative activity against the HCC 1395 cell line. Stigmasterol and canthin-6-one had IC50 values of 7.2 and 0.42. The root bark extract also showed activity, at 8.12 µg/mL, against the HCC 1395 cells. Out of the chemical isolates, 10-methoxycanthin-6-one and canthin-6-one showed the strongest inhibition of the DU 145 cells. The root extract had significant antimicrobial and antiproliferative activities, supporting the traditional use of this plant in treating microbial infections and cancer-related ailments.
The isolation and structure determination of a new bisabolene, 2-methyl-5-(5'-hydroxy-1',5'-dimethyl-3'-hexenyl)phenol, together with known bisabolene, xanthorrhizol and furanosesquiterpenoids, 2- O-acetyl-8,12-epoxygermacra-1(10),4,7,11-tetraene and 2- O-methyl-8,12-epoxygermacra-1(10),4,7,11-tetraene, from gum exudate of Commiphora kua are reported.
Bedbugs are blood-feeding arthropods that cause anemia in humans upon heavy feeding. Control measures are unsuccessful due to resistance to development, environmental pollution, and cost. There is a need to explore natural herbal-based phytochemicals to combat bedbugs. In this study, compounds from Comiphora africana resin were sequentially extracted, fractionated, identified, and evaluated against bedbugs as individual compounds and in combinations. The chemical constituents of the most active fraction were identified using Gas Chromatography-Mass Spectrometry. Results showed that the dichloromethane crude extract had the highest mean repellency (98.5% with an LC50 of 4.96 mg/L after 24 and 72 h of exposure time, respectively), similar to the positive control (neocidol). Column chromatographic separation of the dichloromethane extract yielded 9 fractions where “FR7” (eluted with 60% n-hexane in ethyl acetate) demonstrated the highest mean repellency of 79.0% with an LC50 of 10.12 mg/L after 2 and 24 h exposure times, respectively. From the identified compounds of FR7, cedrol had significantly ( P < .05) higher mean repellency (80.5%) after 6 h of exposure and toxicity (27.43 mg/L) after 24 h exposure. A six-constituent blend of compounds from FR7 [9-octadecenoic acid-ethyl-ester, octadecadien-1-ol, citronellyl formate, cedrol, n-hexadecanoic acid, (1,2)-dihydro-6-methoxy-naphthalene] had the highest mean repellency (93.4% after 12 h exposure) and toxicity (8.83 mg/L after 72 h exposure) than the other blends and individual compounds. This study reports fractions/compounds that can be used in bedbug control measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.