Pulmonary lymph drains into the thoracic duct and then into the systemic venous circulation. Since systemic venous pressure (SVP) must be overcome before pulmonary lymph can flow, variations in SVP may affect lymph flow rate and therefore the rate of fluid accumulation within the lung. The importance of this issue is evident when one considers the variety of clinical interventions that increase SVP and promote pulmonary edema formation, such as volume infusion, positive-pressure ventilation, and various vasoactive drug therapies. We recorded pulmonary arterial pressure (PAP), left atrial pressure (LAP), and SVP in chronic unanesthetized sheep. Occlusion balloons were placed in the left atrium and superior vena cava to control their respective pressures. The superior vena caval occluder was placed above the azygos vein so that bronchial venous pressure would not be elevated when the balloon was inflated. Three-hour experiments were carried out at various LAP levels with and without SVP being elevated to 20 mmHg. The amount of fluid present in the lung was determined by the wet-to-dry weight ratio method. At control LAP levels, no significant difference in lung fluid accumulation could be shown between animals with control and elevated SVP levels. When LAP was elevated above control a significantly greater amount of pulmonary fluid accumulated in animals with elevated SVP levels compared with those with control SVP levels. We conclude that significant excess pulmonary edema formation will occur when SVP is elevated at pulmonary microvascular pressures not normally associated with rapid fluid accumulation.
Escherichia coli endotoxin causes increased capillary membrane permeability and increased pulmonary arterial pressure (PAP) in sheep. If the pulmonary hypertension extends to the level of the microvasculature, then the increased microvascular pressure may contribute to the pulmonary edema caused by endotoxin. We tested the hypothesis that reducing the pulmonary hypertension would reduce the amount of edema caused by endotoxin. Twelve sheep were chronically instrumented with catheters to measure PAP, left atrial pressure, and central venous pressure. The sheep were divided into two groups. One group (E) of six sheep received an intravenous infusion of 4 micrograms/kg of E. coli endotoxin. The second group (E + SNP) received the same dose of endotoxin as well as a continuous infusion of sodium nitroprusside (SNP) to reduce PAP. Three hours after the endotoxin infusions, the sheep were terminated and the extravascular fluid-to-blood-free dry weight ratios of the lungs were determined (EVF). The base-line PAP was 17.5 +/- 2.7 mmHg. A two-way analysis of variance demonstrated a significant difference (P less than 0.01) in PAP between the E and E + SNP groups. Although PAP in each group varied as a function of time, the difference between the two groups did not. The mean PAP for the E + SNP group (20.9 +/- 1.5 mmHg) was lower than the E group PAP of 27.3 +/- 2.1 mmHg after the endotoxin spike. Furthermore, the E + SNP group EVF (3.9 +/- 0.2) was significantly less than the EVF of the E group (4.7 +/- 0.5).(ABSTRACT TRUNCATED AT 250 WORDS)
No abstract
In many sheep Escherichia coli endotoxin results in pulmonary hypertension, increased microvascular permeability, pulmonary edema, and increased central venous pressure. Since lung lymph drains into the systemic veins, increases in venous pressure may impair lymph flow sufficiently to enhance the accumulation of extravascular fluid. We tested the hypothesis that, following endotoxin, elevating the venous pressure would increase extravascular fluid. Thirteen sheep were chronically instrumented with catheters to monitor left atrial pressure (LAP), pulmonary arterial pressure (PAP), and superior vena caval pressure (SVCP) as well as balloons to elevate LAP and SVCP. These sheep received 4 micrograms/kg endotoxin, and following the pulmonary hypertensive spike the left atrial balloon was inflated so that (PAP + LAP)/2 = colloid osmotic pressure. It was necessary to control PAP + LAP in this way to minimize the sheep-to-sheep differences in the pulmonary hypertension. We elevated the SVCP to 10 or 17 mmHg or allowed it to stay low (3.2 mmHg). After a 3-h period, we killed the sheep and removed the right lungs for determination of the extravascular fluid-to-blood-free dry weight ratio (EVF). Sheep with SVCP elevated to 10 or 17 mmHg had significant increases in EVF (5.2 +/- 0.1 and 5.6 +/- 1.2) compared with the sheep in which we did not elevate SVCP (EVF = 4.5 +/- 0.4). These results indicate that sustained elevation in central venous pressure in patients contributes to the amount of pulmonary edema associated with endotoxemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.