Monitoring of human bodily motion requires wearable sensors that can detect position, velocity and acceleration. They should be cheap, lightweight, mechanically compliant and display reasonable sensitivity at high strains and strain rates. No reported material has simultaneously demonstrated all the above requirements. Here we describe a simple method to infuse liquid-exfoliated graphene into natural rubber to create conducting composites. These materials are excellent strain sensors displaying 10(4)-fold increases in resistance and working at strains exceeding 800%. The sensitivity is reasonably high, with gauge factors of up to 35 observed. More importantly, these sensors can effectively track dynamic strain, working well at vibration frequencies of at least 160 Hz. At 60 Hz, we could monitor strains of at least 6% at strain rates exceeding 6000%/s. We have used these composites as bodily motion sensors, effectively monitoring joint and muscle motion as well and breathing and pulse.
In order to fulfil their potential for applications, it will be necessary to develop large-scale production methods for two-dimensional (2D) inorganic nanosheets. Here we demonstrate the large-scale shear-exfoliation of molybdenum disulphide nanosheets in aqueous surfactant solution using a kitchen blender. Using standard procedures, we measure how the MoS2 concentration and production rate scale with processing parameters. However, we also use recently developed methods based on optical spectroscopy to simultaneously measure both nanosheet lateral size and thickness, allowing us to also study the dependence of nanosheet dimensions on processing parameters. We found the nanosheet concentration and production rates to depend sensitively on the mixing parameters (the MoS2 concentration, Ci; the mixing time, t; the liquid volume, V; and the rotor speed, N). By optimising mixing parameters, we achieved concentrations and production rates as high as 0.4 mg/ml and 1.3 mg/min respectively. Conversely, the nanosheet size and thickness were largely invariant with these parameters. The nanosheet concentration is also extremely sensitive to the surfactant concentration. However, more interestingly the nanosheet lateral size and thickness also varied strongly with the surfactant concentration. This allows the mean nanosheet dimensions to be controlled during shear exfoliation at least in the range ~40-220 nm for length and ~2-12 layers for thickness. We demonstrate the importance of this by showing that the MoS2 nanosheets prepared using different surfactant concentrations, and so displaying different nanosheets sizes, perform differently when used as hydrogen evolution catalysts. We find the nanosheets produced using high surfactant concentrations, which gives smaller flake sizes, perform significantly better, consistent with catalysis occurring at nanosheet edges. Finally, we also demonstrate that shear exfoliation using a kitchen blender is not limited to MoS2 but can also be achieved for boron nitride and tungsten disulphide. ToC fig3
To facilitate progression from the lab to commercial applications, it will be necessary to develop simple, scalable methods to produce high quality graphene. Here we demonstrate the production of large quantities of defect-free graphene using a kitchen blender and household detergent. We have characterised the scaling of both graphene concentration and production rate with the mixing parameters: mixing time, initial graphite concentration, rotor speed and liquid volume. We find the production rate to be invariant with mixing time and to increase strongly with mixing volume, results which are important for scale-up. Even in this simple system, concentrations of up to 1 mg ml À1 and graphene masses of >500 mg can be achieved after a few hours mixing. The maximum production rate was $0.15 g h À1 , much higher than for standard sonication-based exfoliation methods. We demonstrate that graphene production occurs because the mean turbulent shear rate in the blender exceeds the critical shear rate for exfoliation.Over the last decade, graphene has become one of the most studied of all nano-materials due to its 2-dimensional structure and its unique set of physical properties. 1,2 During this period, the focus of much of the research community has been on mapping out and understanding the fundamental physics and chemistry of graphene. However, in recent years, the emphasis has started to shi slightly towards the demonstration of applications. 3 Over the next few years, we expect the emphasis to shi further as both academic and industrial researchers concentrate on fullling the applications potential of graphene, eventually leading to a range of graphene-enabled products.However, before this can be achieved, it will be critically important to develop industrially scalable production methods for graphene. While graphene can be produced by a range of techniques, many applications will require solution-processed 4 graphene. In particular, a number of applications will require access to large volumes of graphene dispersions or inks. Using standard solution deposition techniques such as inkjet printing 5,6 or spray coating, 7,8 such inks can be used to prepare a range of lms, coatings or patterned structures. In particular, applications in areas such as printed electronics will require the production of conductive lms or traces. Here, defect free graphene performs particularly well, giving high conductivity structures without high temperature post treatments. 5 Thus, it is clear that large scale production techniques for defect-free graphene are urgently required.Defect free graphene is generally produced by sonicating graphite powder either in certain solvents 9-16 or aqueous surfactant 17-23 solutions. The sonication tends to break up the graphite crystallites as well as exfoliating them to give large number of graphene nanosheets. 11 Raman spectroscopy 15,24,25 shows this method to produce negligible quantities of basal plane defects while XPS shows the akes to be un-oxidised. 14 While the graphene produced by this m...
Due to their ease of fabrication and monodisperse, metallic nature, molybdenum-sulfur-iodine nanowires are an interesting alternative to carbon nanotubes for some applications. However very little is known about the solubility of these materials. In this work we have investigated the solubility of Mo(6)S(4.5)I(4.5) nanowire soot in a range of common solvents by performing sedimentation studies and microscopic and spectroscopic characterization. A sedimentation equation was derived showing that the concentration of any insoluble dispersed phase decreases exponentially with time. We find that in all solvents, Mo(6)S(4.5)I(4.5) nanowire soot contains three phases, two of which are insoluble with one stable phase. Microscopy and spectroscopy show that the first insoluble phase is associated mainly with spherical impurities and sediments rapidly out of solution resulting in purification. The second phase appears to consist of insoluble nanowire bundles and sediments more slowly, eventually leaving a stable dispersion of nanowire bundles. The stably dispersed bundles tend to be smaller than their insoluble counterparts. The best solvents studied were 2-propanol and dimethylformamide. Microscopy studies showed that, in the case of 2-propanol, sonication significantly reduced the bundle size relative to the unsonicated bulk. However, during sedimentation, large quantities of bundles were observed to reaggregate to form larger bundles which subsequently sedimented out of solution. In general, the sedimentation properties of the various phases did not vary significantly with concentration indicating that the insoluble nanowires are intrinsically insoluble. However, the diameter of the stably dispersed bundles decreased with concentration, until very small bundles consisting of only two or three nanowires were observed at concentrations below 0.003 mg/mL. In addition, stable composite dispersions were produced by mixing the nanowires with poly(vinylpyrrolidone) in 2-propanol opening the way for the formation of polymer/inorganic nanowire composites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.