Abstract:In recent years, consumption of herb products has increased in daily diets, contributing to the prevention of cardiovascular diseases, chronic diseases, and certain types of cancer owing to high concentrations of phytonutrients such as essential oils and phenolic compounds. To meet the increasing demand for high quality herbs, controlled environment agriculture is an alternative and a supplement to field production. Light is one of the most important environmental factors influencing herb quality including phytonutrient content, in addition to effects on growth and development. The recent development and adoption of light-emitting diodes provides opportunities for targeted regulation of growth and phytonutrient accumulation by herbs to optimize productivity and quality under controlled environments. For most herb species, red light supplemented with blue light significantly increased plant yield. However, plant yield decreased when the blue light proportion (BP) reached a threshold, which varied among species. Research has also shown that red, blue, and ultraviolet (UV) light enhanced the concentration of essential oils and phenolic compounds in various herbs and improved antioxidant capacities of herbs compared with white light or sunlight, yet these improvement effects varied among species, compounds, and light treatments. In addition to red and blue light, other light spectra within the photosynthetically active region-such as cyan, green, yellow, orange, and far-red light-are absorbed by photosynthetic pigments and utilized in leaves. However, only a few selected ranges of light spectra have been investigated, and the effects of light quality (spectrum distribution of light sources) on herb production are not fully understood. This paper reviews how light quality affected the growth and phytonutrient accumulation of both culinary and medicinal herbs under controlled environments, and discusses future research opportunities to produce high quantity and quality herbs.
We conducted several experiments on linuron-resistant and -susceptiblePortulaca oleraceaand on atrazine-resistant and -susceptibleChenopodium albumto determine their immediate and long-term responses to photosynthesis-inhibiting herbicides. Several photosynthesis-inhibiting herbicides were used, and O2evolution was measured with a Clark-type O2electrode. Resistance ratios (RRs) forP. oleracea, based on O2evolution inhibition, were 8 and > 6 for linuron and diuron, respectively; > 800 for atrazine; and > 20 for terbacil. Linuron-resistantP. oleraceawas negatively cross-resistant to bentazon and pyridate (RR = 0.5 and 0.75, respectively). Time-course measurements of fresh weight, photosynthetic CO2assimilation, and photochemical efficiency indicated that linuron and atrazine inhibited electron transport in susceptible (S)P. oleraceaandC. album, ultimately resulting in death. Measurements of photochemical efficiency and CO2assimilation of linuron-resistantP. oleraceatreated with linuron indicated a transient injury from which plants recovered within 14 d. Recovery of linuron-resistantP. oleraceafrom atrazine injury was more rapid than from linuron injury for all measured variables. Atrazine-resistantC. albumhad no cross-resistance to linuron. Sequence analysis of the D1 protein revealed that linuron-resistantP. oleraceahad a serine-to-threonine substitution at position 264.
Background Vermicomposts (VC) improve plant growth and development beyond that normally observed from just soil nutrient transformation and availability. These increases in plant productivity have been attributed to improved soil structure and soil microbial populations that have higher levels of activity and greater production of biological metabolites, such as plant growth regulators. Although there have been many studies on the benefits of VC as a fertilizer source, little research has focused on the effects and/or interactions of soil type and VC application rates on vegetable crop productivity. This paper identifies optimum application rate(s) of VC on tomato growth responses for three different textural classes of soils (loamy sand, silt loam, and silty clay).Results Soils with high VC rates (0.4 and 0.8 g/g) produced taller plants with more leaf and flower numbers, higher leaf chlorophyll content, greater plant biomass, and more total leaf area compared to soils with low VC rates (0.05, 0.1, and 0.2 g/g). Tomato growth increases were also observed at the low VC soil amendment rates compared to the nontreated control. Tomatoes grown in the sandy soil amended with VC generally had the greatest growth responses (plant height, leaf and flower number, and leaf chlorophyll content) compared to the clay or silt loam soils, with the silt loam soil generally providing the least response. Conclusions This research indicated that VC is a suitable alternative fertilizer for tomato, with approximately 0.5-0.6 g/g VC added to soil resulting in optimal tomato plant growth. Moreover, this rate provided tomato growth results similar to the standard inorganic fertility program. The sandy soil with VC amendments generally increased tomato plant growth parameters the most compared to the clay and loam soils, with the loam soil generally providing the least.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.