Simulation environments are an indispensable tool in the design, prototyping, performance evaluation, and analysis of computer systems. Simulator must be able to faithfully reflect the behavior of the system being analyzed. To ensure the accuracy of the simulator, it must be verified and determined to closely match empirical data. Modern processors provide enough performance counters to validate the majority of the performance models; nevertheless, the information provided is not enough to validate power and thermal models.In order to address some of the difficulties associated with the validation of power and thermal models, this paper proposes an infrared measurement setup to capture run-time power consumption and thermal characteristics of modern chips. We use infrared cameras with high spatial resolution (10x10μm) and high frame rate (125fps) to capture thermal maps. To generate a detailed power breakdown (leakage and dynamic) for each processor floorplan unit, we employ genetic algorithms. The genetic algorithm finds a power equation for each floorplan block that produces the measured temperature for a given thermal package. The difference between the predicted power and the externally measured power consumption for an AMD Athlon analyzed in this paper has less than 1% discrepancy. As an example of applicability, we compare the obtained measurements with CACTI power models, and propose extensions to existing thermal models to increase accuracy.
The modeling of power and thermal behavior of processors requires challenging validation processes, which may be complex and undependable. In order to ameliorate some of the difficulties associated with the validation of power and thermal models, this paper describes an infrared measurement setup that simultaneously captures run-time power consumption, thermal characteristics, and performance activity counters from modern processors. We use infrared cameras with high spatial resolution (10x10µm) and high frame rate (125Hz) to capture thermal maps. Power measurements are obtained with a multimeter, while performance counters are obtained after modifying the operating system (Linux), both at a sampling rate of 1KHz. The synchronized traces can then be used in the validation process of possible thermal, power, and processor activity models.
Simulation environments are an indispensable tool in the design, prototyping, performance evaluation, and analysis of computer systems. Simulator must be able to faithfully reflect the behavior of the system being analyzed. To ensure the accuracy of the simula-tor, it must be verified and determined to closely match empirical data. Modern processors provide enough performance counters to validate the majority of the performance models; nevertheless, the information provided is not enough to validate power and thermal models. In order to address some of the difficulties associated with the validation of power and thermal models, this paper proposes an in-frared measurement setup to capture run-time power consumption and thermal characteristics of modern chips. We use infrared cameras with high spatial resolution (10x10μm) and high frame rate (125fps) to capture thermal maps. To generate a detailed power breakdown (leakage and dynamic) for each processor floorplan unit, we employ genetic algorithms. The genetic algorithm finds a power equation for each floorplan block that produces the measured temperature for a given thermal package. The difference between the predicted power and the externally measured power consumption for an AMD Athlon analyzed in this paper has less than 1% discrepancy. As an example of applicability, we compare the obtained measurements with CACTI power models, and propose extensions to existing thermal models to increase accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.