Summary
Prebiotics are known for their health benefits to man, including reducing cardiovascular disease and improving gut health. This review takes a critical assessment of the impact of dietary fibres and prebiotics on the gastrointestinal microbiota in vitro. The roles of colonic organisms, slow fermentation of prebiotics, production of high butyric and propionic acids and positive modulation of the host health were taken into cognizance. Also, the short‐chain fatty acids (SCFAs) molecular signalling mechanisms associated with their prebiotic substrate structural conformations and the phenotypic responses related to the gut microbes composition were discussed. Furthermore, common dietary fibres such as resistant starch, pectin, hemicelluloses, β‐glucan and fructan in context of their prebiotic potentials for human health were also explained. Finally, the in vitro human colonic fermentation depends on prebiotic type and its physicochemical characteristics, which will then affect the rate of fermentation, selectivity of micro‐organisms to multiply, and SCFAs concentrations and compositions.
Rapid rate of industrialization has turned our planet around in favor of fast foods, food fraud, food terrorism, food waste, food adulteration, food poisoning, food contamination and food injustice, paving the path for green, smart and organic products. Green foods are grown and harvested in the absence of any form of environmental pollution or harmful conditions. Smart foods are termed to be good for the consumers, farmers and the planet. Organic foods are regarded as “credence goods” because some of the attributes that consumers may consider are neither obvious nor easily verified. Therefore, these three terms are interconnected as they forge a substantive common denominator - healthfulness. The concepts of green, smart and organic (GSO) foods are herein recounted together with their interdependence and relationship to health and sustainability. The processes, policies and global trends of GSO foods were discussed, whilst not undermining the benefits and challenges associated with them.
Prebiotics can be synthesized from sources other than dietary fibers, such as proteins. The proteins, when processed into peptides have healthful or deleterious effects on the host. Outside living systems, prebiotic peptides (PP) are formed via preformation of amino acids or related monomeric building blocks, resulting in nonenzymatic polymerization/ligation to produce peptides. Whereas, inside living systems like the human gut, many metabolic pathways are involved in PP production, and mostly involve host-microbiota interactions. The interplay is responsible for PP activities and their implications on host amino acid balance and metabolism. Similar to carbohydrates fermentation, PP will yield short chain fatty acids (SCFA), but also branched chain fatty acids (BCFAs), phenols, indole, hydrogen sulfide, amines, and ammonia, capable of biologically mediating molecular signals. This holistic review considers a brief description of prebiotics, and tracks down prebiotic peptides formation processes, interactions with gut microbes, and health outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.