Among pyridine-nucleotide-dependent oxidoreductases, the class 3 family of aldehyde dehydrogenases (ALDHs) is unusual in its ability to function with either NAD or NADP. This is all the more surprising because an acidic residue, Glu140, coordinates the adenine ribose 2 H hydroxyl. In many NAD-dependent dehydrogenases a similarly placed carboxylate is thought to be responsible for exclusion of NADP. The corresponding residue in most (< 71%) sequences in the ALDH extended family is also Glu, and most of these are NAD-specific enzymes. Site-directed mutagenesis was performed on this residue in rat class 3 ALDH. Our results indicate that this residue contributes to tighter binding of NAD in the native enzyme, but suggest that additional factors must contribute to the ability to utilize NADP. Mutagenesis of an adjacent basic residue (Lys137) indicates that it is even more essential for binding both coenzymes, consistent with its conservation in nearly all ALDHs (. 98%).
Mammalian Class 3 aldehyde dehydrogenase (ALDH) is normally associated with neoplastic transformation or xenobiotic induction by aromatic hydrocarbons in liver. However, Class 3 ALDH is constitutively expressed at it's highest specific activity in corneal epithelium. Tissue-specific, differential gene expression is often controlled by alternative, independent molecular pathways. We report here the development of an in vitro corneal epithelium culture system that retains constitutive high expression of the ALDH3 gene. This model system was used to establish, by enzymatic assays, Western and Northern analyses, histochemical and immunocytochemical staining, and 5'3' RACE methodologies that constitutive and xenobiotic induction of Class 3 ALDHs occurs from a single gene. Our results also provide a plausible explanation for the very high Class 3 ALDH activity in mammalian cornea, as the primary mechanism of oxidation of lipid peroxidation-derived aldehydes. Further studies with corneal epithelium suggest the presence of additional mechanisms, other than Ah-receptor-mediated, by which the ALDH3 gene can be differentially regulated in a tissue-specific manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.