The Class 3 aldehyde dehydrogenase gene (ALDH-3) is differentially expressed. Expression is either constitutive or xenobiotic inducible via an aromatic hydrocarbon (Ah) receptor-mediated pathway, depending upon the tissue. A series of studies were performed to examine the regulation of rat ALDH-3 basal expression. DNase I footprint analysis identified four DNA regions within the proximal 1 kb of the 5' flanking region of rat ALDH-3 which interact with regulatory proteins. Reporter gene and gel mobility shift assays indicate that Sp1-like proteins interact with two proximal DNase I footprinted sites to confer strong promoter activity. Two distal DNase I footprinted sites are found within a region that inhibits rat ALDH-3 promoter activity. This negative region is bound by NF1-like proteins and/or unique proteins. This 1 kb 5' flanking region of rat ALDH-3 may act constitutively in many cell types. In contrast with other Ah receptor regulated genes, no DNA elements or transcription factors acting within this region appear to be involved in regulating xenobiotic-inducible expression of rat ALDH-3.
We investigated the inhibitory effects of intracellular cyclic adenosine monophosphate (cAMP) levels in regulating class 3 aldehyde dehydrogenase (aldh3) gene expression using cultures of primary rat hepatocytes and transient transfection experiments with HepG2 cells. In addition to regulation by an Ah receptor-dependent mechanism, expression of many members of the Ah gene battery have been shown to be negatively regulated. As was seen for the cytochrome P450 (cyp1A1) gene, aldh3 is transcriptionally inducible by polycyclic aromatic hydrocarbons (PAH), and this induction involving function of the arylhydrocarbon (Ah) receptor is inhibited by the protein kinase C (PKC) inhibitors, 1-(5-isoquinolinesulfonyl)-2-methylpiperazine di-HCl (H7) and staurosporine. However, PAH induction of ALDH-3 activity, protein, and mRNA was potentiated 2-4-fold by addition of the protein kinase A (PKA) inhibitors, N-(2-(methylamino)ethyl)-5-isoquinolinesulfonamide di-HCl (H8) and N-(2-guanidinoethyl)-5-isoquinolinesulfonamide HCl (HA1004). These PKA inhibitors had no effect on the PAH induction of the cyp1A1. Protein kinase A activity of cultured hepatocytes was specifically inhibited by H8 and HA1004 in a concentration-dependent manner, but not by H7, and there was an inverse correlation observed between potentiation of PAH-induced aldh3 gene expression and inhibition of specific PKA activity by the PKA inhibitors. The cAMP analog dibutyryl cAMP, the adenylate cyclase activator forskolin, and the protein phosphatase 1 and 2A inhibitor okadaic acid all dramatically inhibited both PAH induction and H8 potentiation of PAH induction of aldh3 expression but had no effect on induction of cyp1A1 expression in cultured hepatocytes.Both basal and PAH-dependent expression of a chloramphenicol acetyltransferase expression plasmid containing approximately 3.5 kilobase pairs of the 5-flanking region of aldh3 (pALDH3.5CAT) were enhanced 3-4-fold by the PKA inhibitor H8 but not by the PKC inhibitor H7 (>20 M). cAMP analogs, activators of PKA activity, or protein phosphatase inhibitors diminished expression of the reporter gene in a manner identical to the native gene in cultured rat hepatocytes. Using deletion analysis of the pALDH3.5CAT construct, we demonstrated the existence of a negative regulatory region in the 5-flanking region between ؊1057 and ؊991 base pairs which appears to be responsible for the cAMP-dependent regulation of this gene under both basal and PAH-induced conditions. At least two apparently independent mechanisms which involve protein phosphorylation regulate aldh3 expression. One involves function of the Ah receptor which requires PKC protein phosphorylation to positively regulate both aldh3 and cyp1A1 gene expression and the other a cAMP-responsive process which allows PKA activity to negatively regulate expression of aldh3 under either basal or inducible conditions.The aldehyde dehydrogenases (ALDH, 1 aldehyde NAD(P) ϩ oxidoreductase EC 1.2.1.3) are a family of NAD(P) ϩ -dependent enzymes that oxidize a broad class of alde...
No abstract
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.