This paper solves the consumption-investment problem with Epstein-Zin utility on a random horizon. In an incomplete market, we take the random horizon to be a stopping time adapted to the market filtration, generated by all observable, but not necessarily tradable, state processes. Contrary to prior studies, we do not impose any fixed upper bound for the random horizon, allowing for truly unbounded ones. Focusing on the empirically relevant case where the risk aversion and the elasticity of intertemporal substitution are both larger than one, we characterize optimal consumption and investment strategies through backward stochastic differential equations (BSDEs). Compared with classical results on a fixed horizon, our characterization involves an additional stochastic process to account for the uncertainty of the horizon. As demonstrated in a Markovian setting, this added uncertainty drastically alters optimal strategies from the fixed-horizon case. The main results are obtained through developing new techniques for BSDEs with superlinear growth on an unbounded random horizon.
As space becomes more congested, on orbit inspection is an increasingly relevant activity whether to observe a defunct satellite for planning repairs or to de-orbit it. However, the task of on orbit inspection itself is challenging, typically requiring the careful coordination of multiple observer satellites. This is complicated by a highly nonlinear environment where the target may be unknown or moving unpredictably without time for continuous command and control from the ground. There is a need for autonomous, robust, decentralized solutions to the inspection task. To achieve this, we consider a hierarchical, learned approach for the decentralized planning of multi-agent inspection of a tumbling target. Our solution consists of two components: a viewpoint or high-level planner trained using deep reinforcement learning and a navigation planner handling point-to-point navigation between pre-specified viewpoints. We present a novel problem formulation and methodology that is suitable not only to reinforcement learning-derived robust policies, but extendable to unknown target geometries and higher fidelity information theoretic objectives received directly from sensor inputs. Operating under limited information, our trained multi-agent high-level policies successfully contextualize information within the global hierarchical environment and are correspondingly able to inspect over 90% of non-convex tumbling targets, even in the absence of additional agent attitude control.
Artistically controlling fluids has always been a challenging task. Recently, volumetric Neural Style Transfer (NST) techniques have been used to artistically manipulate smoke simulation data with 2D images. In this work, we revisit previous volumetric NST techniques for smoke, proposing a suite of upgrades that enable stylizations that are significantly faster, simpler, more controllable and less prone to artifacts. Moreover, the energy minimization solved by previous methods is camera dependent. To avoid that, a computationally expensive iterative optimization performed for multiple views sampled around the original simulation is needed, which can take up to several minutes per frame. We propose a simple feed-forward neural network architecture that is able to infer view-independent stylizations that are three orders of the magnitude faster than its optimization-based counterpart.
This paper solves the consumption‐investment problem under Epstein‐Zin preferences on a random horizon. In an incomplete market, we take the random horizon to be a stopping time adapted to the market filtration, generated by all observable, but not necessarily tradable, state processes. Contrary to prior studies, we do not impose any fixed upper bound for the random horizon, allowing for truly unbounded ones. Focusing on the empirically relevant case where the risk aversion and the elasticity of intertemporal substitution are both larger than one, we characterize the optimal consumption and investment strategies using backward stochastic differential equations with superlinear growth on unbounded random horizons. This characterization, compared with the classical fixed‐horizon result, involves an additional stochastic process that serves to capture the randomness of the horizon. As demonstrated in two concrete examples, changing from a fixed horizon to a random one drastically alters the optimal strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.