We report on a Tm:fiber master oscillator power amplifier (MOPA) system producing 109 W CW output power, with >15 dB polarization extinction ratio, sub-nm spectral linewidth, and M2 <1.25. The system consists of polarization maintaining (PM) fiber and PM-fiber components including tapered fiber bundle pump combiners, a single-mode to large mode area mode field adapter, and a fiber-coupled isolator. The laser components ultimately determine the system architecture and the limits of laser performance, particularly considering the immature and rapidly developing state of fiber components in the 2 μm wavelength regime.
We demonstrate selective spatial mode amplification in a few mode, double-clad Yb-doped large mode area (LMA) fiber, utilizing an all-fiber photonic lantern. Amplification to multi-watt output power is achieved while preserving high spatial mode selectivity. We observe gain values of over 12 dB for all modes: LP01, LP11a, and LP11b, when amplified individually. Additionally, we investigate the simultaneous amplification of LP01+LP11a and LP11a+LP11b, and the resultant mode competition. The proposed architecture allows for the reconfigurable excitation of spatial modes in the LMA fiber amplifiers, and represents a promising method that could enable dynamic spatial mode control in high power fiber lasers.
We demonstrate and characterize a highly linearly polarized (18.8 dB) narrow spectral emission (<80 pm) from an all-fiber Tm laser utilizing femtosecond-laser-written fiber Bragg gratings. Thermally-dependent anisotropic birefringence is observed in the FBG transmission, the effects of which enable both the generation and elimination of highly linearly polarized output. To our knowledge, this is the first detailed study of such thermal anisotropic birefringence in femtosecond-written FBGs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.