IMPORTANCE There is potential scientific and clinical value in validation of objective biomarkers for sport-related concussion (SRC). OBJECTIVE To investigate the association of acute-phase blood biomarker levels with SRC in collegiate athletes. DESIGN, SETTING, AND PARTICIPANTS This multicenter, prospective, case-control study was conducted by the National Collegiate Athletic Association (NCAA) and the US Department of Defense Concussion Assessment, Research, and Education (CARE) Consortium from February 20, 2015, to May 31, 2018, at 6 CARE Advanced Research Core sites. A total of 504 collegiate athletes with concussion, contact sport control athletes, and non-contact sport control athletes completed clinical testing and blood collection at preseason baseline, the acute postinjury period, 24 to 48 hours after injury, the point of reporting being asymptomatic, and 7 days after return to play. Data analysis was conducted from March 1 to November 30, 2019. MAIN OUTCOMES AND MEASURES Glial fibrillary acidic protein (GFAP), ubiquitin C-terminal hydrolase-L1 (UCH-L1), neurofilament light chain, and tau were quantified using the Quanterix Simoa multiplex assay. Clinical outcome measures included the Sport Concussion Assessment Tool-Third Edition (SCAT-3) symptom evaluation, Standardized Assessment of Concussion, Balance Error Scoring System, and Brief Symptom Inventory 18.
Purpose of Review The concussion public health burden has increased alongside our knowledge of the pathophysiology of mild traumatic brain injury (mTBI). The purpose of this review is to summarize our current understanding of mTBI pathophysiology and biomechanics and how these underlying principles correlate with clinical manifestations of mTBI. Recent Findings Changes in post-mTBI glutamate and GABA concentrations seem to be region-specific and timedependent. Genetic variability may predict recovery and symptom severity while gender differences appear to be associated with the neuroinflammatory response and neuroplasticity. Ongoing biomechanical research has shown a growing body of evidence in support of an "individual-specific threshold" for mTBI that varies based on individual intrinsic factors. Summary The literature demonstrates a well-characterized timeframe for mTBI pathophysiologic changes in animal models while work in this area continues to grow in humans. Current human research shows that these underlying post-mTBI effects are multifactorial and may correlate with symptomatology and recovery. While wearable sensor technology has advanced biomechanical impact research, a definitive concussion threshold remains elusive.
Introduction Regulatory efforts toward reducing concussion risk have begun to focus on decreasing the number of head impacts (i.e., head impact burden) sustained by athletes in contact sports. To that end, in 2018, the NCAA decreased the number of preseason on-field team activities for Division I teams from 29 to 25. The objective of the current study was to quantify changes in practice schedule and head impact exposure between the 2017 and 2018 football preseasons. Methods Athletes from five NCAA Division I football teams (n = 426) were consented and enrolled. Results On average, athletes participated in 10% fewer contact practices in 2018. However, the effect of this ruling on preseason head impact burden was mixed. Across all athletes, the total preseason head impact burden was essentially the same from 2017 to 2018. However, this study revealed significant team-by-team differences in preseason head impact burden, with one team demonstrating a 35% increase in the average number of recorded head impacts from 2017 to 2018, despite a modest decrease in the number of contact practices. Other teams had similar or decreased head impact burden. Conclusions Team-based differences in total preseason head impact burden were attributable to changes in daily practice schedule, with longer practice durations and more intense contact practice sessions contributing to increases in daily head impact exposure that, in turn, led to greater preseason head impact burden. Results of this study have highlighted the difficulty in decreasing contact sport head impact exposure through rule changes targeted at limiting on-field team activities. Future efforts aimed specifically at contact practice duration, daily head impact exposure, or limiting time in specific drills may be more effective at reducing total preseason head impact burden.
Despite the worldwide popularity of running as a sport for children, relatively little is known about its impact on injury and illness. Available studies have focused on adolescent athletes, but these findings may not be applicable to preadolescent and pubescent athletes. To date, there are no evidence or consensus-based guidelines identifying risk factors for injury and illness in youth runners, and current recommendations regarding suitable running distances for youth runners at different ages are opinion based. The International Committee Consensus Work Group convened to evaluate the current science, identify knowledge gaps, categorise risk factors for injury/illness and provide recommendations regarding training, nutrition and participation for youth runners.
There has been a recent call for longitudinal cohort studies to track the physiological recovery of sport-related concussion (SRC) and its relationship with clinical recovery. Resting-state functional magnetic resonance imaging (rs-fMRI) has shown potential for detecting subtle changes in brain function after SRC. We investigated the effects of SRC on rs-fMRI metrics assessing local connectivity (regional homogeneity; REHO), global connectivity (average nodal strength), and the relative amplitude of slow oscillations of rs-fMRI (fractional amplitude of low-frequency fluctuations; fALFF). Athletes diagnosed with SRC (n = 92) completed visits with neuroimaging at 24-48 h post-injury (24 h), after clearance to begin the return-to-play (RTP) progression (asymptomatic), and 7 days following unrestricted RTP (post-RTP). Noninjured athletes (n = 82) completed visits yoked to the schedule of matched injured athletes and served as controls. Concussed athletes had elevated symptoms, worse neurocognitive performance, greater balance deficits, and elevated psychological symptoms at the 24-h visit relative to controls.These deficits were largely recovered by the asymptomatic visit. Concussed athletes still reported elevated psychological symptoms at the asymptomatic visit relative to controls. Concussed athletes also had elevated REHO in the right middle and superior frontal gyri at the 24-h visit that returned to normal levels by the asymptomatic visit. Additionally, REHO in these regions at 24 h predicted psychological symptoms at the asymptomatic visit in concussed athletes. Current results suggest that SRC is associated with an acute alteration in local connectivity that follows a similar time course as clinical recovery. Our results do not indicate strong evidence that concussion-related alterations in rs-fMRI persist beyond clinical recovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.