The primary cell wall is highly hydrated in its native state, yet many structural studies have been conducted on dried samples. Here, we use grazing-incidence wide-angle X-ray scattering (GIWAXS) with a humidity chamber, which enhances scattering and the signal-to-noise ratio while keeping outer onion epidermal peels hydrated, to examine cell wall properties. GIWAXS of hydrated and dried onion reveals that the cellulose ($$110/1\overline{1}0$$ 110 / 1 1 ¯ 0 ) lattice spacing decreases slightly upon drying, while the (200) lattice parameters are unchanged. Additionally, the ($$110/1\overline{1}0$$ 110 / 1 1 ¯ 0 ) diffraction intensity increases relative to (200). Density functional theory models of hydrated and dry cellulose microfibrils corroborate changes in crystalline properties upon drying. GIWAXS also reveals a peak that we attribute to pectin chain aggregation. We speculate that dehydration perturbs the hydrogen bonding network within cellulose crystals and collapses the pectin network without affecting the lateral distribution of pectin chain aggregates.
Biomass recalcitrance during deconstruction remains a key bottleneck to affordable biomass processing technologies. A clear connection between the cell wall structure and biomass deconstruction is necessary to understand how lignocellulosic material is broken down to valuable monomeric components. Here, we monitor changes in the cellulose microfibril domains of poplar, sorghum, and switchgrass throughout gamma-valerolactone (GVL)–water co-solvent pretreatment and enzymatic hydrolysis using solid-state 13C cross-polarization magic angle spinning nuclear magnetic resonance spectroscopy (CP/MAS 13C-NMR) and wide-angle X-ray scattering (WAXS). Spectral fitting of NMR peaks corresponding to different cellulose microenvironments at the C4 carbon center suggests that a mildly acidic GVL–water co-solvent pretreatment of poplar leads to nearly full removal of xylan–cellulose linkages, which primes the cellulose for enzymatic attack. The spectral fitting also suggests that the pretreatment causes significant depletion of the inaccessible fibril surface domains with an increase in more thermally stable crystalline resonances (Iβ). WAXS confirmed a decrease in the lattice spacing between (200) crystalline planes with increasing co-solvent pretreatment severity. These results are interpreted as an opening of bound microfibril surfaces previously inaccessible to the co-solvent system, which leaves behind a more thermally stable, crystalline domain that is potentially prone to relaxation and recrystallization. Full conversion of residual GVL-pretreated biomass was achieved after the GVL co-solvent pretreatment at 140 °C using a commercial enzyme cocktail, CTec2, which contains different cellulases and other enzymes. Spectral fitting of enzymatically hydrolyzed samples by a single engineered cellulase, CelR, suggests that the residual cellulose recalcitrance is mainly due to the inability of CelR to digest the Iβ crystalline domain present in pretreated samples. This work helps to provide new information regarding the structure of the cell wall and recalcitrance throughout GVL–water mild acidolysis and CelR enzymatic biomass deconstruction by tracking the evolution of structural domains within the cellulose microfibril. This work further directs recommendations for improving the conversion and sugar yields in future studies. Our findings inform inquiry into larger questions of cellulose recalcitrance through GVL pretreatment and CelR enzymatic hydrolysis and give insight into subsequent required steps for full cellulose conversion with attention to the most recalcitrant cellulose structures.
Understanding the relationship between structure and function for biological assemblies can guide identification of new therapeutics, design of biomaterials, and development of biotechnological processes. Resonant X-ray scattering provides a chemically-specific approach to characterize complex biological structures based on anomalous or resonant scattering from a specific element or chemical moiety. Anomalous or resonant diffraction can provide structural details with high atomic resolution, while resonant X-ray scattering can provide structural details with lower resolution through tender or soft X-rays. Here, we review applications, challenges, and opportunities for resonant X-ray scattering in the field of structural biology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.