Organo-soluble photoresponsive azo thiol monolayer-protected gold nanorods were synthesized; the resulting gold nanorods encapsulated by thiols on their entire surface with strong covalent Au-S linkages were very stable in both organic solvents and in the solid state without aggregation or decomposition.
Photolithographic attachment of functional organic molecules via ester or amide linkages to self-assembled monolayers (SAMs) on gold thin films was achieved by employing a novel photoreactive surface anchor, 7-diazomethylcarbonyl-2,4,9-trithiaadmantane. The photoreactive SAM was prepared by the spontaneous physical adsorption of the photoreactive surface anchor onto gold surfaces. The alpha-diazo ketone moiety of the SAM was found to display the classical Wolff rearrangement reactivity to produce a ketene intermediate on the exposed area. Organic molecules such as alcohols and amines can thus be attached to the gold surfaces selectively by the facile in situ formation of ester or amide linkages. The structure and reactivity of the photoreactive surface anchor were characterized by real-time FT-IR, fluorescence, and polarization modulation infrared reflectance absorption spectroscopy (PM-IRRAS). The Wolff rearrangement reactivity of the SAM suggested that a "surface-isolated" carbonylcarbene may be generated when the SAM was exposed to 255-nm irradiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.