We present a novel approach of designing and fabricating a noninvasive drug delivery device which is capable of delivering the drug to the target site in a controlled manner. The device utilizes a reservoir which can be reused once the drug has completely diffused from it. This micro-reservoir based fabricated device has been successfully tested using niosomes of insulin drug filled in, which was then sealed with a magnetic membrane of 20 µm thick and was actuated by applying magnetic field. The deflection of the membrane on application of magnetic field results in the drug release from the reservoir. The discharge of the drug solution and the release rates was controlled by external magnetic field. The simulation of the membrane deflection using COMSOL software was carried out to optimize the concentration of the ferrous nanopowder in PDMS matrix. The characterization of the devices was implemented in-vitro on water and in-vivo on Wistar rats. It was also validated using high-performance liquid chromatography (HPLC) by observing characteristic peak of insulin. The blood samples showed the retention time of 2.79 min at λ of 280 nm which further authenticated the effectiveness of the proposed work. This noninvasive fabricated device provides reusability, precise control and can enable the patient or a physician to actively administrate the drug when required.
Implantable devices that detect and treat diseases without any intervention required from the patient are expected to be the trend of the future. This paper presents a peizo electrically controlled MEMS drug delivery device for on-demand release of defined quantities of drug in a sustained and controlled manner. A drug-loaded polymer based micro reservoir (600µm ×550µm) is sealed by a Polydimethylsiloxane (PDMS) membrane placed over the drug reservoir on which the piezoelectric material is deposited. On application of voltage across this piezoelectric material, the membrane deflects allowing the fluid to fill into the chamber that will mix with the drug and due to concentration variation; the drug would come off the reservoir or vice versa. A 0.3µm-thick PZT material is deposited on 20µm PDMS membrane. Discharge of the drug solution and the release rates were controlled by an external electric field. Characterization of the devices was implemented in-vitro using the colored water solution. The reservoir was capable of delivering 20µl drug on application of 10V.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.