. (2013). Systematics of spiny-backed treefrogs (Hylidae: Osteocephalus): an Amazonian puzzle. -Zoologica Scripta, 42, 351-380. Spiny-backed tree frogs of the genus Osteocephalus are conspicuous components of the tropical wet forests of the Amazon and the Guiana Shield. Here, we revise the phylogenetic relationships of Osteocephalus and its sister group Tepuihyla, using up to 6134 bp of DNA sequences of nine mitochondrial and one nuclear gene for 338 specimens from eight countries and 218 localities, representing 89% of the 28 currently recognized nominal species. Our phylogenetic analyses reveal (i) the paraphyly of Osteocephalus with respect to Tepuihyla, (ii) the placement of 'Hyla' warreni as sister to Tepuihyla, (iii) the non-monophyly of several currently recognized species within Osteocephalus and (iv) the presence of low (<1%) and overlapping genetic distances among phenotypically well-characterized nominal species (e.g. O. taurinus and O. oophagus) for the 16S gene fragment used in amphibian DNA barcoding. We propose a new taxonomy, securing the monophyly of Osteocephalus and Tepuihyla by rearranging and redefining the content of both genera and also erect a new genus for the sister group of Osteocephalus. The colouration of newly metamorphosed individuals is proposed as a morphological synapomorphy for Osteocephalus. We recognize and define five monophyletic species groups within Osteocephalus, synonymize three species of Osteocephalus (O. germani, O. phasmatus and O. vilmae) and three species of Tepuihyla (T. celsae, T. galani and T. talbergae) and reallocate three species (Hyla helenae to Osteocephalus, O. exophthalmus to Tepuihyla and O. pearsoni to Dryaderces gen. n.). Furthermore, we flag nine putative new species (an increase to 138% of the current diversity). We conclude that species numbers are largely underestimated, with most hidden diversity centred on widespread and polymorphic nominal species. The evolutionary origin of breeding strategies within Osteocephalus is discussed in the light of this new phylogenetic hypothesis, and a novel type of amplexus (gular amplexus) is described. Corresponding author: Karl-Heinz Jungfer, Institute of Integrated Sciences, Department of Biology, University of Koblenz-Landau, Universit€ atsstr. 1, 56070 Koblenz, Germany. E-mail: khjungfer@aol.com Juli an Faivovich, Divisi on Herpetolog ıa, Museo Argentino de Ciencias Naturales 'Bernardino Rivadavia'-CONICET, Angel Gallardo 470, C1405DJR, Buenos Aires, Argentina and Departamento de Biodiversidad y Biologia Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina. E-mail: julian@macn.gov.ar Jos e M. Padial, Section of Amphibians and Reptiles, Carnegie Museum of Natural History, 4400 Forbes Avenue, Pittsburgh, PA, 15213-4080 Systematics of spiny-backed treefrogs K.-H. Jungfer et al. IntroductionTreefrogs of the genus Osteocephalus constitute an important component of the amphibian fauna of the Amazonian and Guianan regions of South America. Their distributions...
Deciphering the products of evolution at the species level: the need for an integrative taxonomy. -Zoologica Scripta , 38 , 431-447. Progress in molecular techniques together with the incorporation of phylogenetic analyses of DNA into taxonomy have caused an increase in the number of species' discoveries in groups with morphological characters that are difficult to study or in those containing polytypic species. But some emerged criticisms plead for a taxonomic conservatism grounded either on the requirement of providing evidences of morphological distinctiveness or reproductive barriers to erect new species names. In a case study of taxonomic research on Neotropical frogs, we combine several lines of evidence (morphological characters, prezygotic reproductive isolation and phylogenetic analyses of mitochondrial DNA) to test the status of 15 nominal species and to assess the degree of agreement of the different lines of evidence. Our study reveals that morphology alone is not sufficient to uncover all species, as there is no other single line of evidence independently. Full congruence between lines of evidence is restricted to only four out of the 15 species. Five species show congruence of two lines of evidence, whereas the remaining six are supported by only one. The use of divergence in morphological characters seems to be the most conservative approach to delineate species boundaries because it does not allow the identification of some sibling reciprocally monophyletic species differing in their advertisement calls. The separate analysis of differences in advertisement calls (evidence of reproductive isolation) or of phylogenetic data alone also shows limitations, because they do not support some morphological species. Our study shows that only an integrative approach combining all sources of evidence provides the necessary feedback to evaluate the taxonomic status of existing species and to detect putative new ones. Furthermore, the application of integrative taxonomy enables the identification of hypotheses about the existence of species that will probably be rejected or changed, and those that can be expected to persist.
Despite recent efforts to accelerate exploration and species description, the diversity of high Andean frogs remains highly underestimated. We report high levels of species diversity in direct-developing frogs or terraranas inhabiting the wet puna and adjacent cloud forests of the Amazonian versant of the Andes in Bolivia and Peru. Descriptive evidence of external morphology, distribution patterns and molecular phylogenetic analyses support the existence of nine unnamed species in two clades, which represents a 30% increase in species diversity for those clades. The relationships of these species and their relatives in Holoadeninae are tested using nuclear and mitochondrial genes for 159 terminals representing the 11 genera in this subfamily and 25 species of previously unknown relationships. Our results corroborate species monophyly in all but three cases and support the monophyly of all Holoadeninae genera, albeit the position of some differs between analyses. We propose a new genus (Microkayla gen. nov.) for the clade containing all Bolivian species formerly in Psychrophrynella plus five species from southern Peru. The new genus is monophyletic and supported by anatomical synapomorphies. Psychrophrynella is re-diagnosed and redefined to include three species from the Andes of southern Peru. We discuss the taxonomic instability associated with Noblella and Psychrophrynella due to the fact that the type species of both genera share a number of traits that support a close relationship. We also name and describe three new species of Bryophryne and two of Microkayla from Peru, provide baseline data for the future description of four Bolivian species of Microkayla, and describe the unknown mating calls of two species. Our results support that the grasslands of the Amazonian versant of the Andes harbour a large diversity of species with small altitudinal and horizontal distributions that replace each other along a latitudinal axis. These species belong to different lineages whose closest relatives are forest species, often from distant parts of the continent. These patterns suggest that high Andean environments were colonized several times independently by species with forest ancestors and which radiated into a multitude of species with remarkably similar ecomorphologies. The extent of these radiations remains obscured by a still rudimentary knowledge of species diversity due to insufficient fieldwork and taxonomic research.
Amphibians are probably the most vulnerable group to climate change and climate-change associate diseases. This ongoing biodiversity crisis makes it thus imperative to improve the taxonomy of anurans in biodiverse but understudied areas such as Amazonia. In this study, we applied robust integrative taxonomic methods combining genetic (mitochondrial 16S, 12S and COI genes), morphological and environmental data to delimit species of the genus Amazophrynella (Anura: Bufonidae) sampled from throughout their pan-Amazonian distribution. Our study confirms the hypothesis that the species diversity of the genus is grossly underestimated. Our analyses suggest the existence of eighteen linages of which seven are nominal species, three Deep Conspecific Lineages, one Unconfirmed Candidate Species, three Uncategorized Lineages, and four Confirmed Candidate Species and described herein. We also propose a phylogenetic hypothesis for the genus and discuss its implications for historical biogeography of this Amazonian group.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.