Soil temperature is a fundamental parameter in water resources and irrigation engineering. A cost-effective model that can accurately forecast soil temperature is urgently needed. Recently, many studies have applied artificial intelligence (AI) at both surface and underground levels for soil temperature predictions. In the present study, attempts are made to deliver a comprehensive and detailed assessment of the performance of a wide range of AI approaches in soil temperature prediction. In this regard, thirteen approaches, from classic regressions to well-established methods of random forest and gradient boosting to more advanced AI techniques, such as multi-layer perceptron and deep learning, are taken into account. Meanwhile, great varieties of land and atmospheric variables are applied as model inputs. A sensitivity analysis was conducted on input climate variables to determine the importance of each variable in predicting soil temperature. This examination reduced the number of input variables from 8 to 7, which decreased the simulation load. Additionally, this showed that air temperature and solar radiation play the most important roles in soil temperature prediction, while precipitation can be neglected in forecast AI models. The comparison of soil temperature predicted by different AI models showed that deep learning demonstrated the best performance with R-squared of 0.980 and NRMSE of 2.237%, followed by multi-layer perceptron with R-squared of 0.980 and NRMSE of 2.266%. In addition, the performance of developed AI models was evaluated in extremely hot events since heat warnings are essential to protect lives and properties. The assessment showed that deep learning and multi-layer perceptron methods still have the best prediction. However, their R-squared decreased to 0.862 and 0.859, and NRMSE increased to 6.519% and 6.601%, respectively.
The distributed measured data in large regions and remote locations, along with a need to estimate climatic data for point sites where no data have been recorded, has encouraged the implementation of spatial interpolation techniques. Recently, the increasing use of artificial intelligence has become a promising alternative to conventional deterministic algorithms for spatial interpolation. The present study aims to evaluate some machine learning-based algorithms against conventional strategies for interpolating soil temperature data from a region in southeast Canada with an area of 1000 km by 550 km. The radial basis function neural networks (RBFN) and the deep learning approach were used to estimate soil temperature along a railroad after the spline deterministic spatial interpolation method failed to interpolate gridded soil temperature data on the desired locations. The spline method showed weaknesses in interpolating soil temperature data in areas with sudden changes. This limitation did not improve even by increasing the spline nonlinearity. Although both radial basis function neural networks and the deep learning approach had successful performances in interpolating soil temperature data even in sharp transition areas, deep learning outperformed the former method with a normalized RMSE of 9.0% against 16.2% and an R-squared of 89.2% against 53.8%. This finding was confirmed in the same investigation on soil water content.
Soil temperature is a critical parameter in soil science, agriculture, meteorology, hydrology, and water resources engineering, and its accurate and cost-effective determination and prediction are very important. Machine learning models are widely employed for surface, near-surface, and subsurface soil temperature predictions. The present study employed a properly designed one-dimensional convolutional neural network model to predict the hourly soil temperature at a subsurface depth of 0–7 cm. The annual input dataset for this model included eight hourly climatic features. The performance of this model was assessed using a wide range of evaluation metrics and compared to that of a multilayer perceptron model. A detailed sensitivity analysis was conducted on each feature to determine its importance in predicting the soil temperature. This analysis showed that air temperature had the greatest impact and surface thermal radiation had the least impact on soil temperature prediction. It was concluded that the one-dimensional convolutional model performed better than the multilayer perceptron model in predicting the soil temperature under both normal and hot weather conditions. The findings of this study demonstrated the capability of the model to predict the daily maximum soil temperature.
Soil temperature is an essential factor for agricultural, meteorological, and hydrological applications. Direct measurement, despite its high accuracy, is impractical on a large spatial scale due to the expensive and time-consuming process. On the other hand, the complex interaction between variables affecting soil temperature, such as topography and soil properties, leads to challenging estimation processes by empirical methods and physical models. Machine learning (ML) approaches gained considerable attention due to their ability to address the limitations of empirical and physical methods. These approaches are capable of estimating the variables of interest using complex nonlinear relationships with no assumptions about data distribution. However, their sensitivity to input data as well as the need for a large amount of training ground truth data limits the application of machine learning approaches. The current paper aimed to provide a review of ML techniques implemented for soil temperature modeling, their challenges, and milestones achieved in this domain.
Soil temperature is a fundamental parameter in water resources and engineering. A cost-effective model which can forecast soil temperature accurately is extensively needed. Recently, many studies have applied artificial intelligence (AI) at both surface and underground levels for soil temperature prediction. However, there is no comprehensive and detailed assessment of the performance of different AI approaches in soil temperature estimation, and primarily limited atmospheric variables are used as input data for AI models. In the present study, great varieties of various land and atmospheric variables are applied to evaluate the performance of a wide range of AI methods on soil temperature prediction. Herein, thirteen approaches, from classic regressions to well-established methods of random forest and gradient boosting to advanced AI techniques like multi-layer perceptron and deep learning are taken into account. The results show that AI is a promising approach in climate parameter forecast and deep learning demonstrates the best performance among other models. It has the highest R-squared ranging from 0.957 to 0.980, the lowest NRMSE ranging from 2.237% to 3.287% and the lowest MAE, ranging from 0.510 to 0.743 in predicting soil temperature. The prediction is repeated for different sizes of data, and prediction outcomes confirm the conclusion mentioned above.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.