The purpose of this study was to assess validity and reliability of sprint performance outcomes measured with an iPhone application (named: MySprint) and existing field methods (i.e. timing photocells and radar gun). To do this, 12 highly trained male sprinters performed 6 maximal 40-m sprints during a single session which were simultaneously timed using 7 pairs of timing photocells, a radar gun and a newly developed iPhone app based on high-speed video recording. Several split times as well as mechanical outputs computed from the model proposed by Samozino et al. [(2015). A simple method for measuring power, force, velocity properties, and mechanical effectiveness in sprint running. Scandinavian Journal of Medicine & Science in Sports. https://doi.org/10.1111/sms.12490] were then measured by each system, and values were compared for validity and reliability purposes. First, there was an almost perfect correlation between the values of time for each split of the 40-m sprint measured with MySprint and the timing photocells (r = 0.989-0.999, standard error of estimate = 0.007-0.015 s, intraclass correlation coefficient (ICC) = 1.0). Second, almost perfect associations were observed for the maximal theoretical horizontal force (F), the maximal theoretical velocity (V), the maximal power (P) and the mechanical effectiveness (DRF - decrease in the ratio of force over acceleration) measured with the app and the radar gun (r = 0.974-0.999, ICC = 0.987-1.00). Finally, when analysing the performance outputs of the six different sprints of each athlete, almost identical levels of reliability were observed as revealed by the coefficient of variation (MySprint: CV = 0.027-0.14%; reference systems: CV = 0.028-0.11%). Results on the present study showed that sprint performance can be evaluated in a valid and reliable way using a novel iPhone app.
Prefrailty and sarcopenia in combination are more predictive of mortality than either condition alone. Early detection of these syndromes determines the prognosis of health-related adverse events since both conditions can be reversed through appropriate interventions. Nowadays, there is a lack of cheap, portable, rapid, and easy-to-use tools for detecting prefrailty and sarcopenia in combination. The aim of this study is to validate an iPhone App to detect prefrailty and sarcopenia syndromes in community-dwelling older adults. A diagnostic test accuracy study will include at least 400 participants aged 60 or over without cognitive impairment and physical disability recruited from elderly social centers of Murcia (Spain). Sit-to-stand muscle power measured through a slow-motion video analysis mobile application will be considered as the index test in combination with muscle mass (calf circumference or upper mid-arm circumference). Frailty syndrome (Fried’s Phenotype) and sarcopenia (EWGSOP2) will both be considered as reference standards. Sensibility, specificity, positive and negative predictive values and likelihood ratios will be calculated as well as the area under the curve of the receiver operating characteristic. This mobile application will add the benefit for screening large populations in short time periods within a field-based setting, where space and technology are often constrained (NCT05148351).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.