The response to drought of 20 open-pollinated families from four Pinus pinaster Ait. populations covering a latitudinal cline (France, Central and Southern Spain, and Morocco) was assessed. The seedlings were cultivated in a greenhouse under controlled temperature and vapor pressure deficit for 120 days, and subjected to two watering regimes for 60 days. Different biomass partitioning variables, pre-dawn water potential, and isotopic discrimination of 13 C in needles (Δ) as surrogate of long-term water use efficiency were estimated for each seedling at the end of the experiment. In response to the imposed drought, there was no change in the root biomass partitioning, but the overall Δ values decreased in response to water stress. All the families of the population from Morocco showed the highest investment in roots, regardless of the watering regime imposed. Inter-family differences within populations were also significant for most parameters as confirmed by the heritability values estimated (higher under the well-watered treatment). The studied P. pinaster populations showed different strategies of response to drought. This may represent an important mechanism by local populations in facing future climatic change. The results could be of value in forest conservation and breeding programs of maritime pine in the future.
Natural variation of the metabolome of Pinus pinaster was studied to improve understanding of its role in the adaptation process and phenotypic diversity. The metabolomes of needles and the apical and basal section of buds were analysed in ten provenances of P. pinaster, selected from France, Spain and Morocco, grown in a common garden for 5 years. The employment of complementary mass spectrometry techniques (GC-MS and LC-Orbitrap-MS) together with bioinformatics tools allowed the reliable quantification of 2403 molecular masses. The analysis of the metabolome showed that differences were maintained across provenances and that the metabolites characteristic of each organ are mainly related to amino acid metabolism, while provenances were distinguishable essentially through secondary metabolism when organs were analysed independently. Integrative analyses of metabolome, environmental and growth data provided a comprehensive picture of adaptation plasticity in conifers. These analyses defined two major groups of plants, distinguished by secondary metabolism: that is, either Atlantic or Mediterranean provenance. Needles were the most sensitive organ, where strong correlations were found between flavonoids and the water regime of the geographic origin of the provenance. The data obtained point to genome specialization aimed at maximizing the drought stress resistance of trees depending on their origin.
Abstract. We have studied the development in nurseries of containerized Pinus radiata produced with different container systems in order to choose the most suitable system for producing wellbalanced plants with an optimal root system. At the end of the production period, significant differences were found in morphological responses among the seedlings to the various container characteristics. Seedlings grown in containers that permitted lateral air puning presented less growth and lower biomass production. However, root deformations were more frequent and severe in plants produced in closed-wall containers. Field performance was likewise mainly affected by container type and plant growth rate, as faster grown plants showed more problems of stability than plants with a balanced root and stem development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.