AB STRACT: A suspended growth photobioreactor was utilized to treat pharmaceutical wastewater by a wild strain purple non-sulfur photosynthetic bacterium isolated from the soil. The strain was named Z08 and identified as Rhodobacter-sphaeroides by 16SrDN. The photobioreactor was illuminated externally with two (40 W) fluorescent compact light sources on both sides. Its operation pH and temperature were between 6.8 -7.0 and 20 -30 ºC, respectively. Optimum growth of the isolate was obtained after enrichment of the pharmaceutical wastewater with 0.5 % ammonium sulfate and 0.1 % yeast extract under microaerobic optimum light (6000 lx) condition at 5d retention. Using these optimum conditions, the maximum dry cell weight and chemical oxygen demand percentage removal were 880 mg/L and 80 %. Chemical analysis of the culture after treatment of the enriched and non-enriched wastewater showed the crude protein content of the biomass to be 54.6 % and 38.0 %, respectively. This study proved that photosynthetic bacteria could transform complex wastewater that contains recalcitrant organic compounds with a resultant recovery of useful products.
Afterglow nanoparticles (AGNPs) possessing inherently long lifetime with tailorable emission colors and uniform size have long been sought due to their time‐gating‐free high‐contrast multiplexing imaging. Herein, via a straightforward template method, it is reported that such multicolor AGNPs can be accomplished. The resultant AGNPs exhibit a series of tunable afterglow emissions, including blue, yellow, green, and white. These multicolor AGNPs are found to be highly bright, enabling them to perform high‐contrast multichannel afterglow imaging in vitro and in vivo without the use of any complicated time‐gating algorithms or systems, which existing tools are unable to do.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.