Recent studies have established that dysregulation of the human immune system and the reactivation of latent herpesviruses persists for the duration of a 6-month orbital spaceflight. It appears certain aspects of adaptive immunity are dysregulated during flight, yet some aspects of innate immunity are heightened. Interaction between adaptive and innate immunity also seems to be altered. Some crews experience persistent hypersensitivity reactions during flight. This phenomenon may, in synergy with extended duration and galactic radiation exposure, increase specific crew clinical risks during deep space exploration missions. The clinical challenge is based upon both the frequency of these phenomena in multiple crewmembers during low earth orbit missions and the inability to predict which specific individual crewmembers will experience these changes. Thus, a general countermeasure approach that offers the broadest possible coverage is needed. The vehicles, architecture, and mission profiles to enable such voyages are now under development. These include deployment and use of a cis-Lunar station (mid 2020s) with possible Moon surface operations, to be followed by multiple Mars flyby missions, and eventual human Mars surface exploration. Current ISS studies will continue to characterize physiological dysregulation associated with prolonged orbital spaceflight. However, sufficient information exists to begin consideration of both the need for, and nature of, specific immune countermeasures to ensure astronaut health. This article will review relevant in-place operational countermeasures onboard ISS and discuss a myriad of potential immune countermeasures for exploration missions. Discussion points include nutritional supplementation and functional foods, exercise and immunity, pharmacological options, the relationship between bone and immune countermeasures, and vaccination to mitigate herpes (and possibly other) virus risks. As the immune system has sentinel connectivity within every other physiological system, translational effects must be considered for all potential immune countermeasures. Finally, we shall discuss immune countermeasures in the context of their individualized implementation or precision medicine, based on crewmember specific immunological biases.
Space flight exerts a specific conglomerate of stressors on humans that can modulate the immune system. The mechanism remains to be elucidated and the consequences for cosmonauts in the long term are unclear. Most of the current research stems from short-term spaceflights as well as pre- and post-flight analyses due to operational limitations. Immune function of 12 cosmonauts participating in a long-duration (>140 days) spaceflight mission was monitored pre-, post-, and on two time-points in-flight. While the classical markers for stress such as cortisol in saliva where not significantly altered, blood concentrations of the endocannabinoid system (ECS) were found to be highly increased in-flight indicating a biological stress response. Moreover, subjects showed a significant rise in white blood cell counts. Neutrophils, monocytes and B cells increased by 50% whereas NK cells dropped by nearly 60% shortly after landing. Analysis of blood smears showed that lymphocyte percentages, though unchanged pre- and post-flight were elevated in-flight. Functional tests on the ground revealed stable cellular glutathione levels, unaltered baseline and stimulated ROS release in neutrophils but an increased shedding of L-selectin post-flight. In vitro stimulation of whole blood samples with fungal antigen showed a highly amplified TNF and IL-1β response. Furthermore, a significant reduction in CD4 + CD25 + CD27 low regulatory T cells was observed post-flight but returned to normal levels after one month. Concomitantly, high in-flight levels of regulatory cytokines TGF-β, IL-10 and IL-1ra dropped rapidly after return to Earth. Finally, we observed a shift in the CD8 + T cell repertoire toward CD8 + memory cells that lasted even one month after return to Earth. Conclusion: Long-duration spaceflight triggered a sustained stress dependent release of endocannabinoids combined with an aberrant immune activation mimicking features of people at risk for inflammation related diseases. These effects persisted in part 30 days after return to Earth. The currently available repertoire of in-flight testing as well as the post-flight observation periods need to be expanded to tackle the underlying mechanism for and consequences of these immune changes in order to develop corresponding mitigation strategies based on a personalized approach for future interplanetary space explorations.
Key Points Shear stress–induced release of RNA from endothelial cells is crucial for initiation of arteriogenesis by controlling mechanotransduction. Extracellular RNA is essential for VWF release from endothelial cells initiating the inflammatory process driving arteriogenesis.
This study revealed unique insights into the extent, dynamics, and genetics of immune dysfunctions in humans exposed for 1 year to the Antarctic environment at the Concordia station. The scale of immune function was imbalanced toward a sensitizing of inflammatory pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.