Increasing evidence indicated that excess salt consumption can impose risks on human health and a reduction in daily salt intake from the current average of approximately 12 g/d to 5–6 g/d was suggested by public health authorities. The studies on mice have revealed that sodium chloride plays a role in the modulation of the immune system and a high-salt diet can promote tissue inflammation and autoimmune disease. However, translational evidence of dietary salt on human immunity is scarce. We used an experimental approach of fixing salt intake of healthy human subjects at 12, 9, and 6 g/d for months and examined the relationship between salt-intake levels and changes in the immune system. Blood samples were taken from the end point of each salt intake period. Immune phenotype changes were monitored through peripheral leukocyte phenotype analysis. We assessed immune function changes through the characterization of cytokine profiles in response to mitogen stimulation. The results showed that subjects on the high-salt diet of 12 g/d displayed a significantly higher number of immune cell monocytes compared with the same subjects on a lower-salt diet, and correlation test revealed a strong positive association between salt-intake levels and monocyte numbers. The decrease in salt intake was accompanied by reduced production of proinflammatory cytokines interleukin (IL)-6 and IL-23, along with enhanced producing ability of anti-inflammatory cytokine IL-10. These results suggest that in healthy humans high-salt diet has a potential to bring about excessive immune response, which can be damaging to immune homeostasis, and a reduction in habitual dietary salt intake may induce potentially beneficial immune alterations.
Immune changes during space flights in excess of two weeks have been almost exclusively studied by Russian investigators. Most of these studies have compared postflight values with those obtained before flight. In a very few cases, analyses have also been attempted during flight or with samples collected during flight. Studies of cosmonauts during spaceflight have shown that IgG levels were unchanged, whereas IgA and IgM levels were sometimes increased. Additionally, inflight delayed type hypersensitivity testing demonstrated a decrease below the warning level in 1/3 of the cosmonauts tested. Pre- vs. postflight analyses have often revealed a postflight decrease in: PHA-triggered lymphocyte blast transformation; the proliferation index of T-lymphocytes in the xenogeneic graft versus host reaction; the mitogen-induced production of interleukin-2; the presence of certain leukocyte sub sets; and cytotoxic activity of natural killer cells. Other factors that either did not change, or changed in an apparently random manner after flight included: production of alpha and gamma interferon; autoimmune tests; and globulin classes.
Space flight exerts a specific conglomerate of stressors on humans that can modulate the immune system. The mechanism remains to be elucidated and the consequences for cosmonauts in the long term are unclear. Most of the current research stems from short-term spaceflights as well as pre- and post-flight analyses due to operational limitations. Immune function of 12 cosmonauts participating in a long-duration (>140 days) spaceflight mission was monitored pre-, post-, and on two time-points in-flight. While the classical markers for stress such as cortisol in saliva where not significantly altered, blood concentrations of the endocannabinoid system (ECS) were found to be highly increased in-flight indicating a biological stress response. Moreover, subjects showed a significant rise in white blood cell counts. Neutrophils, monocytes and B cells increased by 50% whereas NK cells dropped by nearly 60% shortly after landing. Analysis of blood smears showed that lymphocyte percentages, though unchanged pre- and post-flight were elevated in-flight. Functional tests on the ground revealed stable cellular glutathione levels, unaltered baseline and stimulated ROS release in neutrophils but an increased shedding of L-selectin post-flight. In vitro stimulation of whole blood samples with fungal antigen showed a highly amplified TNF and IL-1β response. Furthermore, a significant reduction in CD4 + CD25 + CD27 low regulatory T cells was observed post-flight but returned to normal levels after one month. Concomitantly, high in-flight levels of regulatory cytokines TGF-β, IL-10 and IL-1ra dropped rapidly after return to Earth. Finally, we observed a shift in the CD8 + T cell repertoire toward CD8 + memory cells that lasted even one month after return to Earth. Conclusion: Long-duration spaceflight triggered a sustained stress dependent release of endocannabinoids combined with an aberrant immune activation mimicking features of people at risk for inflammation related diseases. These effects persisted in part 30 days after return to Earth. The currently available repertoire of in-flight testing as well as the post-flight observation periods need to be expanded to tackle the underlying mechanism for and consequences of these immune changes in order to develop corresponding mitigation strategies based on a personalized approach for future interplanetary space explorations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.