Space flight exerts a specific conglomerate of stressors on humans that can modulate the immune system. The mechanism remains to be elucidated and the consequences for cosmonauts in the long term are unclear. Most of the current research stems from short-term spaceflights as well as pre- and post-flight analyses due to operational limitations. Immune function of 12 cosmonauts participating in a long-duration (>140 days) spaceflight mission was monitored pre-, post-, and on two time-points in-flight. While the classical markers for stress such as cortisol in saliva where not significantly altered, blood concentrations of the endocannabinoid system (ECS) were found to be highly increased in-flight indicating a biological stress response. Moreover, subjects showed a significant rise in white blood cell counts. Neutrophils, monocytes and B cells increased by 50% whereas NK cells dropped by nearly 60% shortly after landing. Analysis of blood smears showed that lymphocyte percentages, though unchanged pre- and post-flight were elevated in-flight. Functional tests on the ground revealed stable cellular glutathione levels, unaltered baseline and stimulated ROS release in neutrophils but an increased shedding of L-selectin post-flight. In vitro stimulation of whole blood samples with fungal antigen showed a highly amplified TNF and IL-1β response. Furthermore, a significant reduction in CD4 + CD25 + CD27 low regulatory T cells was observed post-flight but returned to normal levels after one month. Concomitantly, high in-flight levels of regulatory cytokines TGF-β, IL-10 and IL-1ra dropped rapidly after return to Earth. Finally, we observed a shift in the CD8 + T cell repertoire toward CD8 + memory cells that lasted even one month after return to Earth. Conclusion: Long-duration spaceflight triggered a sustained stress dependent release of endocannabinoids combined with an aberrant immune activation mimicking features of people at risk for inflammation related diseases. These effects persisted in part 30 days after return to Earth. The currently available repertoire of in-flight testing as well as the post-flight observation periods need to be expanded to tackle the underlying mechanism for and consequences of these immune changes in order to develop corresponding mitigation strategies based on a personalized approach for future interplanetary space explorations.
Immune dysregulation is among the main adverse outcomes of spaceflight. Despite the crucial role of the antibody repertoire in host protection, the effects of spaceflight on the human antibody repertoire are unknown. Consequently, using high-throughput sequencing, we examined the IgM repertoire of five cosmonauts 25 days before launch, after 64 ± 11 and 129 ± 20 days spent on the International Space Station (ISS), and at 1, 7, and 30 days after landing. This is the first study of this kind in humans. Our data revealed that the IgM repertoire of the cosmonauts was different from that of control subjects (n = 4) prior to launch and that two out the five analyzed cosmonauts presented significant changes in their IgM repertoire during the mission. These modifications persisted up to 30 days after landing, likely affected the specificities of IgM binding sites, correlated with changes in the V(D)J recombination process responsible for creating antibody genes, and coincided with a higher stress response. These data confirm that the immune system of approximately half of the astronauts who spent 6 months on the ISS is sensitive to spaceflight conditions, and 2 | BUCHHEIM Et al. F I G U R E 4 The cosmonaut IgM repertoire is different from that of the controls. A, Dot blots show individual dispersion indexes for unique VDJ associations in controls (n = 4) and cosmonauts (n = 5) at the beginning of the study (left panel) and 8 months later for controls or 7 days after landing for cosmonauts (right panel). B, Dot blots show the individual frequency of IGHV replacement footprints at the same time points. Statistically significant differences were found using unpaired t tests (A) and Mann-Whitney U tests (B). *P ≤ .
Gravitational stress in general and microgravity (µg) in particular are regarded as major stress factors responsible for immune system dysfunction in space. To assess the effects of alternating µg and hypergravity (hyper-g) on immune cells, the attachment of peripheral blood mononuclear cells (PBMCs) to adhesion molecules under flow conditions and the antigen-induced immune activation in whole blood were investigated in parabolic flight (PF). In contrast to hyper-g (1.8 g) and control conditions (1 g), flow and rolling speed of PBMCs were moderately accelerated during µg-periods which were accompanied by a clear reduction in rolling rate. Whole blood analyses revealed a “primed” state of monocytes after PF with potentiated antigen-induced pro-inflammatory cytokine responses. At the same time, concentrations of anti-inflammatory cytokines were increased and monocytes displayed a surface molecule pattern that indicated immunosuppression. The results suggest an immunologic counterbalance to avoid disproportionate immune responses. Understanding the interrelation of immune system impairing and enhancing effects under different gravitational conditions may support the design of countermeasures to mitigate immune deficiencies in space.
Environmental factors have long been known to influence immune responses. In particular, clinical studies about the association between migration and increased risk of atopy/asthma have provided important information on the role of migration associated large sets of environmental exposures in the development of allergic diseases. However, investigations about environmental effects on immune responses are mostly limited in candidate environmental exposures, such as air pollution. The influences of large sets of environmental exposures on immune responses are still largely unknown. A simulated 520-d Mars mission provided an opportunity to investigate this topic. Six healthy males lived in a closed habitat simulating a spacecraft for 520 days. When they exited their “spacecraft” after the mission, the scenario was similar to that of migration, involving exposure to a new set of environmental pollutants and allergens. We measured multiple immune parameters with blood samples at chosen time points after the mission. At the early adaptation stage, highly enhanced cytokine responses were observed upon ex vivo antigen stimulations. For cell population frequencies, we found the subjects displayed increased neutrophils. These results may presumably represent the immune changes occurred in healthy humans when migrating, indicating that large sets of environmental exposures may trigger aberrant immune activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.