Collectively, these data suggest that miR-125b functions as a tumor suppressor by targeting the PI3K/Akt/mTOR signaling pathway, and may provide potential therapy strategy for ES patients by targeting miRNA expression.
Non-coding RNAs (ncRNAs) have been found to play essential roles in various physiological and pathological processes. The involvement of ncRNAs in the development of osteosarcoma (OS) has been explored in recent years. In this review, we summarize the functions and mechanisms of microRNA, lncRNA and circRNA in the initiation and progression of OS. We specifically focused on their potential application in the diagnosis, prognosis and therapy of OS. This summary of current knowledge on the involvement of ncRNAs in OS will not only aid comprehension of the complex processes of OS initiation and progression but also contribute to the exploration of ideal diagnostic biomarkers and therapeutic targets for OS patients.
This study aimed to assess whether Ginsenoside Rg1 (Rg1) inhibits inflammatory responses in human chondrocytes and reduces articular cartilage damage in a rat model of osteoarthritis (OA). Gene expression and protein levels of type II collagen, aggrecan, matrix metalloproteinase (MMP)-13 and cyclooxygenase-2 (COX-2) were determined in vitro by quantitative real-time-polymerase chain reaction and Western blotting. Prostaglandin E2 (PGE2) amounts in the culture medium were determined by enzyme-linked immunosorbent assay (ELISA). For in vivo assessment, a rat model of OA was generated by anterior cruciate ligament transection (ACLT). Four weeks after ACLT, Rg1 (30 or 60 mg/kg) or saline was administered by gavage once a day for eight consecutive weeks. Joint damage was analyzed by histology and immunohistochemistry. Ginsenoside Rg1 inhibited Interleukin (IL)-1β-induced chondrocyte gene and protein expressions of MMP-13, COX-2 and PGE2, and prevented type II collagen and aggrecan degradation, in a dose-dependent manner. Administration of Ginsenoside Rg1 to OA rats attenuated cartilage degeneration, and reduced type II collagen loss and MMP-13 levels. These findings demonstrated that Ginsenoside Rg1 can inhibit inflammatory responses in human chondrocytes in vitro and reduce articular cartilage damage in vivo, confirming the potential therapeutic value of Ginsenoside Rg1 in OA.
Osteosarcoma is a malignant tumor that occurs most commonly in the metaphysis of the long bones in the limbs in children and adolescents. Even with surgery and neoadjuvant chemotherapy, the therapeutic effect has reached a peak with 60–70% survival rates. Therefore, new biological targets or molecular mechanisms that enhance the efficacy of osteosarcoma treatments are needed. Circular RNAs (circRNAs) are useful biomarkers that have recently been recognized clinically and in medical research and have been of interest due to the use of next-generation sequencing and bioinformatics analysis. CircRNAs are involved in many diseases, including cancer. Therefore, this review aims to summarize the roles of circRNA in the diagnosis, progression, and prognosis of osteosarcoma.
The failure of axonal regeneration after spinal cord injury (SCI) results in permanent loss of sensorimotor function. The persistent presence of scar tissue, mainly fibrotic scar and astrocytic scar, is a critical cause of axonal regeneration failure and is widely accepted as a treatment target for SCI. Astrocytic scar has been widely investigated, while fibrotic scar has received less attention. Here, we review recent advances in fibrotic scar formation and its crosstalk with other main cellular components in the injured core after SCI, as well as its cellular origin, function, and mechanism. This study is expected to provide an important basis and novel insights into fibrotic scar as a treatment target for SCI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.