We introduce a new extension of the classical Leray-Schauder topological degree in a real separable reflexive Banach space. The new class of mappings for which the degree will be constructed is obtained essentially by replacing the compact perturbation by a composition of mappings of monotone type. It turns out that the class contains the Leray-Schauder type maps as a proper subclass. The new class is not convex thus preventing the free application of affine homotopies. However, there exists a large class of admissible homotopies including subclass of affine ones so that the degree can be effectively used. We shall construct the degree and prove that it is unique. We shall generalize the Borsuk theorem of the degree for odd mappings and show that the 'principle of omitted rays' remains valid. To illuminate the use of the new degree we shall briefly consider the solvability of abstract Hammerstein type equations and variational inequalities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.