A woodpecker strikes its beak toward a tree repeatedly. But, the damage of brain or the brain concussion doesn't occur by this action. Human cannot strike strongly the head without the damage of a brain. Therefore, it is predicted that the brain of a woodpecker is protected from the shock by some methods and that the woodpecker has the original mechanism to absorb a shock. In this study, the endoskeltal structure, especially head part structure of woodpecker is dissected and the impact-proof system is analyzed by FEM and model experiment. From the results, it is obvious that the woodpecker has the original impact-proof system as the unique states of hyoid bone, skull, tissue and brain. Moreover it is considered that woodpecker has the advanced impact-proof system relating with not only the head part but also with the whole body.
Study Design. The stresses exerted on the instrumentation and adjacent bone were evaluated for three reconstruction methods after a total sacrectomy: a modified Galveston reconstruction (MGR), a triangular frame reconstruction (TFR), and a novel reconstruction (NR).Objective. To perform finite-element analysis of reconstruction methods used after a total sacrectomy. Summary of Background Data. When a sacral tumor involves the first sacral vertebra, a total sacrectomy is necessary. It is mandatory to reconstruct the continuity between the spine and the pelvis after a total sacrectomy. However, no previous reports have described a biomechanical study of the reconstructed lumbosacral spine.
Methods.A finite-element model of the lumbar spine and pelvis was constructed. Then three-dimensional MGR, TFR, and NR models were reconstructed, and a finite-element analysis was performed to account for the stresses on the bones and instrumentation.
This experiment shows that from the viewpoint of stress shielding, the reconstruction method, using additional anterior instrumentation with posterior pedicle screws (MPAI and SPAI), stress shields the cancellous bone inside the titanium mesh cage to a higher degree than does the system using posterior pedicle screw fixation alone (MPI). Thus, a reconstruction method with no anterior fixation should be better at allowing stress for remodeling of the bone graft inside the titanium mesh cage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.