A surface engineering approach was adopted for the preparation of a core-shell structure of bimetallic PtCo nanoparticles to improve catalytic activity for methanol oxidation on a mass basis. Synthesis of core-shell Co@Pt nanocomposite catalysts with different Pt content was carried out by reducing platinum precursors using ethylene glycolcitrate (EG) in aqueous solution containing previously formed Co/C. Characterizations were carried out using transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectra (XPS) and electrochemical techniques. The synthesized core-shell Co@Pt nanocomposite catalysts showed enhanced catalytic activity in the methanol oxidation reaction. The enhancement may result from favorable strain effects related to the thickness of Pt shell formed on the non-noble metal substrate. Moreover, the electrocatalytic activity was optimized by tuning shell thickness. This result confirms that changing the Pt shell thickness has a significant effect on the catalytic activities of nonnoble core-noble shell bimetallic nanoclusters. The developed surface-modification method (i.e. by fine-tuning the thickness of Pt shell on the non-noble metal substrate) has great potential application for producing highly active electrochemical catalysts for methanol oxidation on a large scale. The work thus paves the way for further investigating the strain effect in core-shell bimetallic catalysts.
Porous Ni(OH)2 nanoflakes are directly grown on the surface of nickel foam supported Ni3Se2 nanowire arrays using an in situ growth procedure to form 3D Ni3Se2@Ni(OH)2 hybrid material. Owing to good conductivity of Ni3Se2, high specific capacitance of Ni(OH)2 and its unique architecture, the obtained Ni3Se2@Ni(OH)2 exhibits a high specific capacitance of 1689 µAh cm−2 (281.5 mAh g−1) at a discharge current of 3 mA cm−2 and a superior rate capability. Both the high energy density of 59.47 Wh kg−1 at a power density of 100.54 W kg−1 and remarkable cycling stability with only a 16.4% capacity loss after 10 000 cycles are demonstrated in an asymmetric supercapacitor cell comprising Ni3Se2@Ni(OH)2 as a positive electrode and activated carbon as a negative electrode. Furthermore, the cell achieved a high energy density of 50.9 Wh L−1 at a power density of 83.62 W L−1 in combination with an extraordinary coulombic efficiency of 97% and an energy efficiency of 88.36% at 5 mA cm−2 when activated carbon is replaced by metal hydride from a commercial NiMH battery. Excellent electrochemical performance indicates that Ni3Se2@Ni(OH)2 composite can become a promising electrode material for energy storage applications.
NixCoy alloy pompoms formed by the aggregation of nano ultrathin sheets were prepared by simultaneous reduction of NiCl2 and CoCl2 with NaBH4via a liquid-liquid interface reaction. Ni1Co3 pompoms produced markedly higher activity and stability as hydrazine oxidation catalysts than Ni, Co and other NixCoy pompom catalysts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.