The aim of this study was to evaluate the effect of the essential oil of Lippia alba (EOLA) as a feed additive on ionoregulatory and metabolic parameters and pituitary hormones expression in silver catfish, Rhamdia quelen, submitted to a stressful condition (stocking density of 10.6 kg m -3 and limited space). Fish were fed with different concentrations of EOLA (0.0 -control, 0.25 and 0.50 mL kg food -1 ) for 20 days. Metabolic parameters were not affected by the diet, with the exception of alanine aminotransferase, which was higher in the liver of fish fed 0.50 mL EOLA kg food -1. Plasma ions and activity of H + -ATPase did not change, but fish fed 0.25 mL EOLA kg food -1 presented higher Na + /K + -ATPase activity. Somatolactin expression in the pituitary was higher in the fish fed 0.25 mL EOLA kg food, but the expression of growth hormone and prolactin did not change. Therefore, dietary EOLA does not exert a protective effect in R. quelen submitted to a stressful situation because it did not alter most measured parameters. The use of 0.25 mL EOLA kg food -1 seems to be more suitable than 0.50 mL EOLA kg food -1 since the latter may be related to liver damage.O objetivo deste estudo foi avaliar o efeito do óleo essencial de Lippia alba (OELA) como aditivo em rações na ionoregulação, parâmetros metabólicos e expressão de hormônios hipofisários em jundiás, Rhamdia quelen, submetidos a uma situação estressante (densidade de estocagem de 10,6 kg m -3 e espaço limitado). Os peixes foram alimentados com diferentes concentrações de OELA (0,0 -controle, 0,25 e 0,50 mL kg de ração -1 ) durante 20 dias. Parâmetros metabólicos não foram afetados pela dieta, com a exceção da alanina aminotransferase, que foi mais elevada no fígado dos peixes alimentados com 0,50 mL de OELA kg de ração -1. Íons plasmáticos e a atividade da H + -ATPase não apresentaram nenhuma alteração, mas os peixes alimentados com 0,25 mL OELA kg de ração -1 apresentaram maior atividade da Na + / K + -ATPase. A expressão da somatolactina na hipófise de peixes alimentados com 0,25 mL OELA kg de ração -1 aumentou, porém a expressão do hormônio de crescimento e da prolactina não mudou. Portanto, a adição do OELA na ração não tem um efeito protetor em jundiás submetidos a uma situação estressante, pois não influiu na maioria dos parâmetros medidos. O uso de 0,25 mL OELA kg de ração -1 parece ser mais adequado que 0,50 mL OELA kg de ração -1, uma vez que este nível de inclusão pode estar relacionado a danos hepáticos.
Ovulation is triggered by gonadotropin surge-induced signaling cascades. To study the role of extracellular signal-regulated kinase 1/2 (ERK1/2) in bovine ovulation, we administered the pharmacological inhibitor, PD0325901, into the preovulatory dominant follicle by intrafollicular injection. Four of five cows treated with 50 µM PD0325901 failed to ovulate. To uncover the molecular basis of anovulation in ERK1/2-inhibited cows, we collected granulosa and theca cells from Vehicle and PD0325901 treated follicles. Next-generation sequencing of granulosa cell RNA revealed 285 differentially expressed genes between Vehicle and PD0325901-treated granulosa cells at 6 h post-GnRH. Multiple inflammation-related pathways were enriched among the differentially expressed genes. The ERK1/2 dependent LH-induced genes in granulosa cells included EGR1, ADAMTS1, STAT3 and TNFAIP6. Surprisingly, PD0325901 treatment did not affect STAR expression in granulosa cells at 6 h post-GnRH. Granulosa cells had higher STAR protein and theca cells had higher levels of STAR mRNA in ERK1/2-inhibited follicles. Further, both granulosa and theca cells of ERK1/2-inhibited follicles had higher expression of SLC16A1, a monocarboxylate transporter, transporting substances including β-hydroxybutyrate across the plasma membrane. Taken together, ERK1/2 plays a significant role in mediating LH surge-induced gene expression in granulosa and theca cells of the ovulating follicle in cattle.
Natriuretic peptides (NPs) are known to regulate reproductive events in polyovulatory species, but their function and regulation in monovulatory species remain to be fully characterized. Using a well-established in vivo model, we found that bovine granulosa cells from follicles near the deviation stage express mRNA for the three NP receptors (NPR1, NPR2 and NPR3), but not for NP precursors (NPPA, NPPB and NPPC). The abundance of NPR3 mRNA was higher in dominant compared to subordinate follicles at the expected time of follicular deviation. After deviation, mRNA for all NP receptors was significantly more abundant in the dominant follicle. Intrafollicular inhibition of oestrogen receptors downregulated NPR1 mRNA in dominant follicles. In granulosa cells from preovulatory follicles, NPPC mRNA increased at 3 and 6 h after systemic GnRH treatment, but decreased at 12 and 24 h to similar levels observed in samples collected at 0 h. After GnRH treatment, NPR1 mRNA was upregulated at 24 h, NPR3 mRNA gradually decreased after 3 h, while NPR2 mRNA was not regulated. The mRNA expression of the enzyme FURIN increased at 24 h after GnRH treatment. These findings revealed that the expression of mRNA encoding important components of the NP system is regulated in bovine granulosa cells during follicular deviation and in response to GnRH treatment, which suggests a role of NP system in the modulation of these processes in monovulatory species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.