The levels of circulatory inflammatory markers, including interleukin (IL) IL-1β, IL-6, tumor necrosis factor-α (TNF-α) and interferon (INF-γ), are known to increase associated to aging. Caffeine has been reported to produce many beneficial effects for health. Exercise is considered to be a safe medicine to attenuate inflammation and cellular senescence. The purpose of the present study was to investigate the effects of a moderate-intensity swimming exercise (3 % of body weight, 20 min per day, 4 weeks) and sub-chronic supplementation with caffeine (30 mg/kg, 4 weeks) on the serum cytokine levels in middle-aged (18 months) Wistar rats. The effects of swimming exercise and caffeine on oxidative stress in muscle and liver of middle-aged rats were also investigated. The two-way ANOVA of pro-inflammatory cytokine levels demonstrated a significant exercise x caffeine interaction for IL-1β (F (1, 16) = 9.5772; p = 0.0069), IL-6 (F (1, 16) = 8.0463; p = 0.0119) and INF-γ (F (1, 16) = 15.078; p = 0.0013). The two-way ANOVA of TNF-α levels revealed a significant exercise × caffeine interaction (F (1, 16) = 9.6881; p = 0.00670). Swimming exercise and caffeine supplementation increased the ratio of reduced glutathione/oxidized glutathione in the rat liver and gastrocnemius muscle. Hepatic and renal markers of damage were not modified. In conclusion, a moderate-intensity swimming exercise protocol and caffeine supplementation induced positive adaptations in modulating cytokine levels without causing oxidative stress in muscle and liver of middle-aged rats.
These findings indicated that (PhSe)(2) was able to lower plasma lipid concentrations. Further studies are needed to elucidate the exact mechanism by which (PhSe)(2) exerted its hypolipidaemic effect in the management of hyperlipidaemia and atherosclerosis.
We investigated the role of reactive oxygen species (ROS) and nitric oxide (NO) in ethanol-induced relaxation. Vascular reactivity experiments showed that ethanol (0.03-200 mmol/L) induced relaxation in endothelium-intact and denuded rat aortic rings isolated from male Wistar rats. Pre-incubation of intact or denuded rings with l-NAME (non selective NOS inhibitor, 100 μmol/L), 7-nitroindazole (selective nNOS inhibitor, 100 μmol/L), ODQ (selective inhibitor of guanylyl cyclase enzyme, 1 μmol/L), glibenclamide (selective blocker of ATP-sensitive K(+) channels, 3 μmol/L) and 4-aminopyridine (selective blocker of voltage-dependent K(+) channels, 4-AP, 1 mmol/L) reduced ethanol-induced relaxation. Similarly, tiron (superoxide anion (O(2)(-)) scavenger, 1 mmol/L) and catalase (hydrogen peroxide (H(2)O(2)) scavenger, 300 U/mL) reduced ethanol-induced relaxation to a similar extent in both endothelium-intact and denuded rings. Finally, prodifen (non-selective cytochrome P450 enzymes inhibitor, 10 μmol/L) and 4-methylpyrazole (selective alcohol dehydrogenase inhibitor, 10 μmol/L) reduced ethanol-induced relaxation. In cultured aortic vascular smooth muscle cells (VSMCs), ethanol stimulated generation of NO, which was significantly inhibited by l-NAME. In endothelial cells, flow cytometry studies showed that ethanol increased cytosolic Ca(2+) concentration ([Ca(2+)]c), O(2)(-) and cytosolic NO concentration ([NO]c). Tiron inhibited ethanol-induced increase in [Ca(2+)]c and [NO]c. The major new finding of this work is that ethanol induces relaxation via redox-sensitive and NO-cGMP-dependent pathways through direct effects on ROS production and NO signaling. These findings identify putative molecular mechanisms whereby ethanol, at pharmacological concentrations, influences vascular reactivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.