Metal halide perovskite has attracted enhanced interest for its diverse electronic and optoelectronic applications. However, the fabrication of micro‐ or nanoscale crystalline perovskite functional devices remains a great challenge due to the fragility, solvent, and heat sensitivity of perovskite crystals. Here, a strategy is proposed to fabricate electronic and optoelectronic devices by directly growing perovskite crystals on microscale metallic structures in liquid phase. The well‐contacted perovskite/metal interfaces ensure these heterostructures serve as high‐performance field effect transistors (FETs) and excellent photodetector devices. When serving as an FET, the on/off ratio is as large as 106 and the mobility reaches up to ≈2.3 cm2 V−1 s−1. A photodetector is displayed with high photoconductive switching ratio of ≈106 and short response time of ≈4 ms. Furthermore, the photoconductive response is proved to be band‐bending‐assisted separation of photoexcited carriers at the Schottky barrier of the silver and p‐type perovskites.
Memory devices based on lead halide perovskite have attracted great interests because of their unique current− voltage hysteresis. However, current memory devices based on polycrystalline perovskites usually suffer from large intrinsic electronic current and parasitic leakage current due to the existence of grain boundaries, which further leads to high power consumption. Here, a low-power resistance switching randomaccess memory device is demonstrated by assembling singlecrystalline CsPbBr 3 on Ag electrodes. The assembled structure serves as a bipolar nonvolatile resistance switching memory device with a low program current (∼10 nA), good endurance, long data retention (>10 3 S), and big on/off ratio of ∼10 3 . The low program current results in a power of ∼3 × 10 −8 W, which is much lower than that of polycrystalline perovskite-based devices (10 −1 −10 −6 W). It is found that the formation and annihilation of Ag and bromide vacancy conductive filaments contribute to the significant resistive switching effect. At a low resistive state, the conductive filaments originate from the accumulation of Br − ions at the drain. Furthermore, the conductive filaments are proved to be a cone shape, shrinking from the drain to the source.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.