Evaluating metagenomic software is key for optimizing metagenome interpretation and focus of the Initiative for the Critical Assessment of Metagenome Interpretation (CAMI). The CAMI II challenge engaged the community to assess methods on realistic and complex datasets with long- and short-read sequences, created computationally from around 1,700 new and known genomes, as well as 600 new plasmids and viruses. Here we analyze 5,002 results by 76 program versions. Substantial improvements were seen in assembly, some due to long-read data. Related strains still were challenging for assembly and genome recovery through binning, as was assembly quality for the latter. Profilers markedly matured, with taxon profilers and binners excelling at higher bacterial ranks, but underperforming for viruses and Archaea. Clinical pathogen detection results revealed a need to improve reproducibility. Runtime and memory usage analyses identified efficient programs, including top performers with other metrics. The results identify challenges and guide researchers in selecting methods for analyses.
Background Early treatment is key for optimizing the therapeutic success of drugs, and the current initiating treatment that blocks the progression of bone destruction during the pre-arthritic stages remains unsatisfactory. The microbial disorder in rheumatoid arthritis (RA) patients is significantly reversed with effective treatment. Modulating aberrant gut microbiomes into a healthy state is a potential therapeutic approach for preventing bone damage. Results By using metagenomic shotgun sequencing and a metagenome-wide association study, we assessed the effect of Lactobacillus casei ( L. casei ) on the induction of arthritis as well as on the associated gut microbiota and immune disorders in adjuvant-induced arthritis (AIA) rats. Treatment of AIA rats with L. casei inhibited joint swelling, lowered arthritis scores, and prevented bone destruction. Along with the relief of arthritis symptoms, dysbiosis in the microbiome of arthritic rats was significantly reduced after L. casei intervention. The relative abundance of AIA-decreased Lactobacillus strains, including Lactobacillus hominis , Lactobacillus reuteri , and Lactobacillus vaginalis , were restored to normal and Lactobacillus acidophilus was upregulated by the administration of L. casei to the AIA rats. Moreover, L. casei downregulated the expression of pro-inflammatory cytokines, which are closely linked to the effect of the L. casei treatment-associated microbes . Functionally, the maintenance of the redox balance of oxidative stress was involved in the improvement in the L. casei -treated AIA rats. Conclusion A single bacterium, L. casei (ATCC334), was able to significantly suppress the induction of AIA and protect bones from destruction in AIA rats by restoring the microbiome dysbiosis in the gut, indicating that using probiotics may be a promising strategy for treating RA, especially in the early stage of the disease. Electronic supplementary material The online version of this article (10.1186/s40168-019-0719-1) contains supplementary material, which is available to authorized users.
BackgroundLaboratory rats such as the Sprague-Dawley (SD) rats are an important model for biomedical studies in relation to human physiological or pathogenic processes. Here we report the first catalog of microbial genes in fecal samples from Sprague-Dawley rats.FindingsThe catalog was established using 98 fecal samples from 49 SD rats, divided in 7 experimental groups, and collected at different time points 30 days apart. The established gene catalog comprises 5,130,167 non-redundant genes with an average length of 750 bp, among which 64.6% and 26.7% were annotated to phylum and genus levels, respectively. Functionally, 53.1%, 21.8%,and 31% of the genes could be annotated to KEGG orthologous groups, modules, and pathways, respectively.ConclusionsA comparison of rat gut metagenome catalogue with human or mouse revealed a higher pairwise overlap between rats and humans (2.47%) than between mice and humans (1.19%) at the gene level. Ninety-seven percent of the functional pathways in the human catalog were present in the rat catalogue, underscoring the potential use of rats for biomedical research.
The oral microbiota contains billions of microbial cells, which could contribute to diseases in many body sites. Challenged by eating, drinking, and dental hygiene on a daily basis, the oral microbiota is regarded as highly dynamic. Here, we report significant human genomic associations with the oral metagenome from more than 1915 individuals, for both the tongue dorsum (n = 2017) and saliva (n = 1915). We identified five genetic loci associated with oral microbiota at study-wide significance (p < 3.16 × 10−11). Four of the five associations were well replicated in an independent cohort of 1439 individuals: rs1196764 at APPL2 with Prevotella jejuni, Oribacterium uSGB 3339 and Solobacterium uSGB 315; rs3775944 at the serum uric acid transporter SLC2A9 with Oribacterium uSGB 1215, Oribacterium uSGB 489 and Lachnoanaerobaculum umeaense; rs4911713 near OR11H1 with species F0422 uSGB 392; and rs36186689 at LOC105371703 with Eggerthia. Further analyses confirmed 84% (386/455 for tongue dorsum) and 85% (391/466 for saliva) of host genome-microbiome associations including six genome-wide significant associations mutually validated between the two niches. As many of the oral microbiome-associated genetic variants lie near miRNA genes, we tentatively validated the potential of host miRNAs to modulate the growth of specific oral bacteria. Human genetics accounted for at least 10% of oral microbiome compositions between individuals. Machine learning models showed that polygenetic risk scores dominated over oral microbiome in predicting risk of dental diseases such as dental calculus and gingival bleeding. These findings indicate that human genetic differences are one explanation for a stable or recurrent oral microbiome in each individual.
The oral cavity of each person is home to hundreds of bacterial species. While taxa for oral diseases have been studied using culture-based characterization as well as amplicon sequencing, metagenomic and genomic information remains scarce compared to the fecal microbiome. Here, using metagenomic shotgun data for 3346 oral metagenomic samples together with 808 published samples, we obtain 56,213 metagenome-assembled genomes (MAGs), and more than 64% of the 3589 species-level genome bins (SGBs) contain no publicly available genomes. The resulting genome collection is representative of samples around the world and contains many genomes from candidate phyla radiation (CPR) that lack monoculture. Also, it enables the discovery of new taxa such as a genus Candidatus Bgiplasma within the family Acholeplasmataceae. Large-scale metagenomic data from massive samples also allow the assembly of strains from important oral taxa such as Porphyromonas and Neisseria. The oral microbes encode genes that could potentially metabolize drugs. Apart from these findings, a strongly male-enriched Campylobacter species was identified. Oral samples would be more user-friendly collected than fecal samples and have the potential for disease diagnosis. Thus, these data lay down a genomic framework for future inquiries of the human oral microbiome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.