Background Early treatment is key for optimizing the therapeutic success of drugs, and the current initiating treatment that blocks the progression of bone destruction during the pre-arthritic stages remains unsatisfactory. The microbial disorder in rheumatoid arthritis (RA) patients is significantly reversed with effective treatment. Modulating aberrant gut microbiomes into a healthy state is a potential therapeutic approach for preventing bone damage. Results By using metagenomic shotgun sequencing and a metagenome-wide association study, we assessed the effect of Lactobacillus casei ( L. casei ) on the induction of arthritis as well as on the associated gut microbiota and immune disorders in adjuvant-induced arthritis (AIA) rats. Treatment of AIA rats with L. casei inhibited joint swelling, lowered arthritis scores, and prevented bone destruction. Along with the relief of arthritis symptoms, dysbiosis in the microbiome of arthritic rats was significantly reduced after L. casei intervention. The relative abundance of AIA-decreased Lactobacillus strains, including Lactobacillus hominis , Lactobacillus reuteri , and Lactobacillus vaginalis , were restored to normal and Lactobacillus acidophilus was upregulated by the administration of L. casei to the AIA rats. Moreover, L. casei downregulated the expression of pro-inflammatory cytokines, which are closely linked to the effect of the L. casei treatment-associated microbes . Functionally, the maintenance of the redox balance of oxidative stress was involved in the improvement in the L. casei -treated AIA rats. Conclusion A single bacterium, L. casei (ATCC334), was able to significantly suppress the induction of AIA and protect bones from destruction in AIA rats by restoring the microbiome dysbiosis in the gut, indicating that using probiotics may be a promising strategy for treating RA, especially in the early stage of the disease. Electronic supplementary material The online version of this article (10.1186/s40168-019-0719-1) contains supplementary material, which is available to authorized users.
Highlights Early diagnosis could improve lung cancer survival rate. The availability of blood-based screening could increase lung cancer patient uptake. An interdisciplinary mechanism combines metabolomics and machine learning methods. Metabolic biomarkers could be potential screening biomarkers for early detection of lung cancer. Naïve Bayes is recommended as an exploitable tool for early lung tumor prediction.
BackgroundLaboratory rats such as the Sprague-Dawley (SD) rats are an important model for biomedical studies in relation to human physiological or pathogenic processes. Here we report the first catalog of microbial genes in fecal samples from Sprague-Dawley rats.FindingsThe catalog was established using 98 fecal samples from 49 SD rats, divided in 7 experimental groups, and collected at different time points 30 days apart. The established gene catalog comprises 5,130,167 non-redundant genes with an average length of 750 bp, among which 64.6% and 26.7% were annotated to phylum and genus levels, respectively. Functionally, 53.1%, 21.8%,and 31% of the genes could be annotated to KEGG orthologous groups, modules, and pathways, respectively.ConclusionsA comparison of rat gut metagenome catalogue with human or mouse revealed a higher pairwise overlap between rats and humans (2.47%) than between mice and humans (1.19%) at the gene level. Ninety-seven percent of the functional pathways in the human catalog were present in the rat catalogue, underscoring the potential use of rats for biomedical research.
Background The worldwide pandemic of COVID-19 remains a serious public health menace as the lack of efficacious treatments. Cytokine storm syndrome (CSS) characterized with elevated inflammation and multi-organs failure is closely correlated with the bad outcome of COVID-19. Hence, inhibit the process of CSS by controlling excessive inflammation is considered one of the most promising ways for COVID-19 treatment. Results Here, we developed a biomimetic nanocarrier based drug delivery system against COVID-19 via anti-inflammation and antiviral treatment simultaneously. Firstly, lopinavir (LPV) as model antiviral drug was loaded in the polymeric nanoparticles (PLGA-LPV NPs). Afterwards, macrophage membranes were coated on the PLGA-LPV NPs to constitute drugs loaded macrophage biomimetic nanocarriers (PLGA-LPV@M). In the study, PLGA-LPV@M could neutralize multiple proinflammatory cytokines and effectively suppress the activation of macrophages and neutrophils. Furthermore, the formation of NETs induced by COVID-19 patients serum could be reduced by PLGA-LPV@M as well. In a mouse model of coronavirus infection, PLGA-LPV@M exhibited significant targeted ability to inflammation sites, and superior therapeutic efficacy in inflammation alleviation and tissues viral loads reduction. Conclusion Collectively, such macrophage biomimetic nanocarriers based drug delivery system showed favorable anti-inflammation and targeted antiviral effects, which may possess a comprehensive therapeutic value in COVID-19 treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.