Background Since December, 2019, an outbreak of coronavirus disease 2019 (COVID-19) has spread globally. Little is known about the epidemiological and clinical features of paediatric patients with COVID-19. MethodsWe retrospectively retrieved data for paediatric patients (aged 0-16 years) with confirmed COVID-19 from electronic medical records in three hospitals in Zhejiang, China. We recorded patients' epidemiological and clinical features. Findings From Jan 17 to March 1, 2020, 36 children (mean age 8·3 [SD 3·5] years) were identified to be infected with severe acute respiratory syndrome coronavirus 2. The route of transmission was by close contact with family members (32 [89%]) or a history of exposure to the epidemic area (12 [33%]); eight (22%) patients had both exposures. 19 (53%) patients had moderate clinical type with pneumonia; 17 (47%) had mild clinical type and either were asymptomatic (ten [28%]) or had acute upper respiratory symptoms (seven [19%]). Common symptoms on admission were fever (13 [36%]) and dry cough (seven [19%]). Of those with fever, four (11%) had a body temperature of 38·5°C or higher, and nine (25%) had a body temperature of 37·5-38·5°C. Typical abnormal laboratory findings were elevated creatine kinase MB (11 [31%]), decreased lymphocytes (11 [31%]), leucopenia (seven [19%]), and elevated procalcitonin (six [17%]). Besides radiographic presentations, variables that were associated significantly with severity of COVID-19 were decreased lymphocytes, elevated body temperature, and high levels of procalcitonin, D-dimer, and creatine kinase MB. All children received interferon alfa by aerosolisation twice a day, 14 (39%) received lopinavir-ritonavir syrup twice a day, and six (17%) needed oxygen inhalation. Mean time in hospital was 14 (SD 3) days. By Feb 28, 2020, all patients were cured.Interpretation Although all paediatric patients in our cohort had mild or moderate type of COVID-19, the large proportion of asymptomatic children indicates the difficulty in identifying paediatric patients who do not have clear epidemiological information, leading to a dangerous situation in community-acquired infections.
Man-made rivers, owing to proximity to human habitats, facilitate transmission of salmonellosis to humans. To determine the contamination situation by Salmonella in flooded man-made rivers and thereafter the exposure risk to public health, we investigated the prevalence of Salmonella species and their antimicrobial resistance in such rivers, as well as the relationship between the incidence of local infectious diarrhea cases and the number of Salmonella isolates from patients. After a heavy flood, 95 isolates of 13 Salmonella serotypes were isolated from 80 river water samples. The two most prevalent serotypes were Typhimurium and Derby. Eight Salmonella serotypes were newly detected after the flood. Overall, 50 isolates were resistant to ampicillin and/or cefotaxime and carried at least bla. Twelve isolates of serotypes Typhimurium, Derby, Rissen, and Indiana were extended-spectrum β-lactamase (ESBL) producing and carried at least one of bla and bla genes. Twelve isolates of serotypes Typhimurium, Derby, Agona, Rissen, and Indiana were resistant to ciprofloxacin and had gyrA mutations. Isolates of Typhimurium, Derby, and Indiana were concurrently ciprofloxacin resistant and ESBL producing. Pulsed-field gel electrophoresis illustrates the circulation of two dominant clones of Salmonella Typhimurium isolates among patients, river, and food. High prevalence of various highly pathogenic and antimicrobial-resistant Salmonella serotypes shows that man-made rivers are prone to heavy contamination with Salmonella, and as a result put public health at greater risk.
Objective Several experiments on animals have reported the relationship between obstructive sleep apnea–hypopnea syndrome (OSAHS) and gut microbiota. We investigated the gut microbiota composition of children aged 4–6 years with OSAHS to complement the pathogenesis and clinical screening methods of OSAHS. Methods We collected feces from 43 children with OSAHS and 45 controls aged 4–6 years. We extracted total bacterial DNA from feces and analyzed the composition of gut microbiota through 16S ribosomal RNA sequencing. Results There were significant differences in bacteria producing short‐chain fatty acids (SCFAs) between OSAHS children and controls, including Faecalibacterium, Roseburia, and a member of Ruminococcaceae. A gut microbiota model for pediatric OSAHS screening showed that the receiver operating characteristic‐area under the curve (ROC‐AUC) was 0.794 with 79.1% and 80.0% sensitivity and specificity, respectively. Functional analysis of the gut microbiota revealed several alterations in metabolism. Conclusion The composition of gut microbiota in OSAHS children is partially changed. The altered intestinal flora may provide a new screening method for the diagnosis of children with OSAHS. The prediction of gut microbiota function suggests that intestinal metabolic function may be altered in OSAHS children.
Since December 2019, the coronavirus disease 2019 (COVID-19) has spread globally. But the clinical symptoms and detailed follow-up of children with COVID-19 infection are lacking. Here, we conducted a retrospective study including children with confirmed COVID-19. We recorded patients' epidemiological, clinical features, and follow-up data after discharging in order to improve the awareness and treatment of children with COVID-19. Keywords Children. COVID-19-infected. Clinical features. Epidemiological. Follow-up This article is part of the Topical Collection on Covid 19
Background:The intestine of newborns is colonized by bacteria immediately after birth. This study explored dominant bacteria and influencing factors of early intestinal colonization in the early life of very low birth weight infants (VLBWI). Methods:We enrolled 81 VLBWI and collected anal swabs at 24 h, 7th, 14th and 21st day after birth. We conducted bacterial culture for anal swabs, then selected the colony with obvious growth advantages in the plate for further culture and identification. Afterward, we analyzed the distribution and influencing factors of intestinal dominant microbiota combined with clinical data. Results: A total of 300 specimens were collected, of which 62.67% (188/300) had obvious dominant bacteria, including 29.26% (55/188) Gram-positive bacteria and 70.74% (133/188) Gram-negative bacteria. The top five bacteria with the highest detection rates were Klebsiella pneumoniae, Escherichia coli, Enterococcus faecium, Enterococcus faecalis and Serratia marcescens. Meconium-stained amniotic fluid and chorioamnionitis were correlated with intestinal bacterial colonization within 24 h of birth. Mechanical ventilation and antibiotics were independent risk factors affecting colonization. Nosocomial infection of K. pneumoniae and S. marcescens were associated with intestinal colonization. The colonization rates of K. pneumoniae, E. coli, E. faecium, and E. faecalis increased with the birth time. Conclusions: The colonization rate in the early life of VLBWI increased over time and the predominant bacteria were Gram-negative bacteria. Meconium-stained amniotic fluid and chorioamnionitis affect intestinal colonization in early life. Mechanical ventilation and antibiotics were independent risk factors for intestinal bacterial colonization. The nosocomial infection of some bacteria was significantly related to intestinal colonization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.