Emerging storage systems with new flash exhibit ultra-low latency (ULL) that can address performance disparities between DRAM and conventional solid state drives (SSDs) in the memory hierarchy. Considering the advanced low-latency characteristics, different types of I/O completion methods (polling/hybrid) and storage stack architecture (SPDK) are proposed. While these new techniques are expected to take costly software interventions off the critical path in ULL-applied systems, unfortunately no study exists to quantitatively analyze system-level characteristics and challenges of combining such newly-introduced techniques with real ULL SSDs.In this work, we comprehensively perform empirical evaluations with 800GB ULL SSD prototypes and characterize ULL behaviors by considering a wide range of I/O path parameters, such as different queues and access patterns. We then analyze the efficiencies and challenges of the polled-mode and hybrid polling I/O completion methods (added into Linux kernels 4.4 and 4.10, respectively) and compare them with the efficiencies of a conventional interrupt-based I/O path. In addition, we revisit the common expectations of SPDK by examining all the system resources and parameters. Finally, we demonstrate the challenges of ULL SSDs in a real SPDK-enabled server-client system. Based on the performance behaviors that this study uncovers, we also discuss several system implications, which are required to take a full advantage of ULL SSD in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.