SSDs become a major storage component in modern memory hierarchies, and SSD research demands exploring future simulation-based studies by integrating SSD subsystems into a full-system environment. However, several challenges exist to model SSDs under a full-system simulations; SSDs are composed upon their own complete system and architecture, which employ all necessary hardware, such as CPUs, DRAM and interconnect network. Employing the hardware components, SSDs also require to have multiple device controllers, internal caches and software modules that respect a wide spectrum of storage interfaces and protocols. These SSD hardware and software are all necessary to incarnate storage subsystems under full-system environment, which can operate in parallel with the host system.In this work, we introduce a new SSD simulation framework, SimpleSSD 2.0, namely Amber, that models embedded CPU cores, DRAMs, and various flash technologies (within an SSD), and operate under the full system simulation environment by enabling a data transfer emulation. Amber also includes full firmware stack, including DRAM cache logic, flash firmware, such as FTL and HIL, and obey diverse standard protocols by revising the host DMA engines and system buses of a popular full system simulator's all functional and timing CPU models (gem5). The proposed simulator can capture the details of dynamic performance and power of embedded cores, DRAMs, firmware and flash under the executions of various OS systems and hardware platforms. Using Amber, we characterize several system-level challenges by simulating different types of fullsystems, such as mobile devices and general-purpose computers, and offer comprehensive analyses by comparing passive storage and active storage architectures.
Emerging storage systems with new flash exhibit ultra-low latency (ULL) that can address performance disparities between DRAM and conventional solid state drives (SSDs) in the memory hierarchy. Considering the advanced low-latency characteristics, different types of I/O completion methods (polling/hybrid) and storage stack architecture (SPDK) are proposed. While these new techniques are expected to take costly software interventions off the critical path in ULL-applied systems, unfortunately no study exists to quantitatively analyze system-level characteristics and challenges of combining such newly-introduced techniques with real ULL SSDs.In this work, we comprehensively perform empirical evaluations with 800GB ULL SSD prototypes and characterize ULL behaviors by considering a wide range of I/O path parameters, such as different queues and access patterns. We then analyze the efficiencies and challenges of the polled-mode and hybrid polling I/O completion methods (added into Linux kernels 4.4 and 4.10, respectively) and compare them with the efficiencies of a conventional interrupt-based I/O path. In addition, we revisit the common expectations of SPDK by examining all the system resources and parameters. Finally, we demonstrate the challenges of ULL SSDs in a real SPDK-enabled server-client system. Based on the performance behaviors that this study uncovers, we also discuss several system implications, which are required to take a full advantage of ULL SSD in the future.
Traditional image enhancement techniques revise the distribution of pixels or local structure and achieve the impressive performance in image denoising, contrast enhancement and color adjustment. However, they are not effective to improve the overall aesthetic image quality because it may involve contextual modifications, including the removal of disturbing objects, inclusion of appealing visual elements or relocation of the target object.In this paper, we propose a new aesthetic enhancement technique that edits the structural image element guided by a large collection of good exemplars. More specifically, we remove/insert image elements and resize/relocate objects based on good exemplars. Additionally, we remove undesirable regions determined by user interaction and fill these holes seamlessly guided by the exemplars. Based on the experimental evaluation on the database of two landmarks, we observe the considerable improvement in aesthetic quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.