Abstract:To address how seasonality affects the richness and abundance of tropical insects, we compared the canopy and understorey communities of fruit-feeding butterflies in a seasonal Atlantic forest in south-eastern Brazil. Butterflies were sampled over 1 y using a standardized design with baited traps. A total of 2047 individuals in 69 species were recorded (1415 in the canopy, 632 in the understorey). Clear differences were found between canopy and understorey, with significantly higher butterfly abundances in the canopy. We observed two marked peaks of abundance and richness in both strata; one at the transition from dry to the wet seasons, and the other at the transition from wet to dry seasons. We found lower species turnover throughout the year in the canopy. We interpret this as evidence that temperature is more important than rainfall in explaining the yearly variation of abundance in vertical strata. The higher temperatures found in the canopy may allow butterflies to maintain activity in this stratum all year round, whereas the understorey is subject to colder temperatures, thus presenting a higher species turnover. These results improve our understanding of diversity gradients between evergreen and seasonal tropical forests, allowing insights into how climate and beta diversity gradients interact.
Butterflies are one of the best‐known insect groups, and they have been the subject of numerous studies in ecology and evolution, especially in the tropics. Much attention has been given to the fruit‐feeding butterfly guild in biodiversity conservation studies, due to the relative ease with which taxa may be identified and specimens sampled using bait traps. However, there remain many uncertainties about the macroecological and biogeographical patterns of butterflies in tropical ecosystems. In the present study, we gathered information about fruit‐feeding butterfly species in local communities from the Atlantic Forests of South America. The ATLANTIC BUTTERFLIES data set, which is part of ATLANTIC SERIES data papers, results from a compilation of 145 unpublished inventories and 64 other references, including articles, theses, and book chapters published from 1949 to 2018. In total, the data set contains 7,062 records (presence) of 279 species of fruit‐feeding butterflies identified with taxonomic certainty, from 122 study locations. The Satyrini is the tribe with highest number of species (45%) and records (30%), followed by Brassolini, with 13% of species and 12.5% of records. The 10 most common species correspond to 14.2% of all records. This data set represents a major effort to compile inventories of fruit‐feeding butterfly communities, filling a knowledge gap about the diversity and distribution of these butterflies in the Atlantic Forest. We hope that the present data set can provide guidelines for future studies and planning of new inventories of fruit‐feeding butterflies in this biome. The information presented here also has potential use in studies across a great variety of spatial scales, from local and landscape levels to macroecological research and biogeographical research. We expect that such studies be very important for the better implementation of conservation initiatives, and for understanding the multiple ecological processes that involve fruit‐feeding butterflies as biological indicators. No copyright restrictions apply to the use of this data set. Please cite this Data paper when using the current data in publications or teaching events.
Abstract:In the south-eastern Amazon, positive feedbacks between land use and severe weather events are increasing the frequency and intensity of fires, threatening local biodiversity. We sampled fruit-feeding butterflies in experimental plots in a south-eastern Amazon forest: one control plot, one plot burned every 3 y, one plot burned yearly. We also measured environmental parameters (canopy cover, temperature, humidity). Our results show no significant differences in overall species richness between plots (34, 37 and 33 species respectively), although richness was lower in burned plots during the dry season. We found significant differences in community composition and structure between control and burned plots, but not between burned treatments. In the control plot, forest-specialist species represented 64% of total abundance, decreasing to 50% in burned every 3 y and 54% in yearly burned plots. Savanna specialist species were absent in the control plot, but represented respectively 8% and 3% of total abundance in burned plots. The best predictor of the change in spatial community patterns and abundance of forest specialists was canopy cover. Although we found high resilience to forest burning in many species, our study suggests that fire disturbance can still be a threat to forest specialists due to changes in microclimate.
The present paper describes the immature stages of the Neotropical satyrine butterfly Euptychiamollina (Hübner, [1813]) from the Brazilian Amazon Forest. Eggs were laid singly on the under surface of the fronds of its host plant, Selaginella sp. (Bryophyta: Selaginellaceae). Larvae are solitary in all instars, presenting a color pattern and shape that make them cryptic on its host plant. The pupa is short, smooth and varies from rusty brown to green. Despite the lack of a close phylogenetic relationship, larvae of Euptychia are very similar to those of the paleotropical satyrines Ragadia and Acrophtalmia, suggesting that camouflage is likely to be one of the factors explaining the similarities among them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.